Blue Light Excited Broadband NIR-II-emitting

Li₂ZnSn₃O₈:Cr³⁺,Ni²⁺ Phosphor for Multifunctional Optical

Applications

Zhexuan Gao^a, Yi Zhang^a, Yinyan Li^a, Shilong Zhao^a, Peng Zhang^a, Xiaolong Dong^b,

Degang Deng*a, Shiqing Xu*a

 ^a Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
 ^b Fujian Institute of Metrology, Fuzhou, 350003, China

(a) (b) 1750: xCr 0.07 LZSO: 0.03Cr3+, vNi 0.07 0.05 0.05 0.03 Intensity (a.u.) 0.03 Intensity (a.u.) 0.01 0.01 0.007 0.005 0.003 0.005 ICSD 59772 ICSD 59772 70 60 80 10 20 30 60 80 40 50 20 40 2Theta (degree) 2Theta (degree)

Supporting information

Figure S1. Powder XRD patterns of a) LZSO:*y*Cr³⁺, and b) LZSO:0.03Cr³⁺,*y*Ni²⁺ samples (*x*, *y* = 0.003-0.07). The corresponding standard PDF card data of LZSO (ICSD 59772) is given as a reference.

Figure S2. The EDS spectrum of LZSO:0.03Cr³⁺,0.03Ni²⁺ phosphor.

Figure S3. The overlap between the PL of LZSO: Cr^{3+} and PLE of LZSO: Ni^{2+} .

The Tanabe-Sugano energy level diagram can be used to represent the split of the 3d8 energy levels of Ni²⁺ in the octahedral field when Ni²⁺ (3d⁸) ions are located in the octahedral coordination field, and the crystal field strength of Ni²⁺ in the octahedral can be described using the Tanabe-Sugano theory, and the crystal field strength Dq and Racah parameter B can be obtained according to the following equation:⁽¹⁾

$$D_{q} = \frac{v_{1}}{10}$$
(1)
$$B = \frac{(v_{3} - 2v_{1}) \cdot (v_{3} - v_{1})}{3(5v_{3} - 9v_{1})}$$
(2)

(2)

In the equations, v_3 and v_1 correspond to 400 nm [${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$, 25000cm⁻¹], and 1100 nm [${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$, 9090.9 cm⁻¹], respectively. Therefore, Dq is 909.09 cm^{-1} , B is 837.32 cm⁻¹ and Dq/B is 1.09, respectively.

Figure S4. Tanabe-Sugano diagram for a) Cr^{3+} and b) Ni^{2+} ion in octahedral coordination.

Figure S5 The ET efficiency based on the Intensity of Cr^{3+} concentration in LZSO:0.03 Cr^{3+} , yNi^{2+} system.

IQE is the ratio of the number of emitted photons to the number of absorbed photons, EQE is the ratio of the number of emitted photons to the number of total photons excited by the light source, and absorption efficiency (α Abs) is the proportion of the number of photons absorbed by the sample and the number of total photons excited by the light source. The relationship among IQE, EQE and α Abs can be expressed by the following equations:⁽²⁾

$$IQE = \frac{\int L_{S}}{\int E_{R} - \int E_{S}}$$

$$AE = \frac{\int E_{R} - \int E_{S}}{\int E_{R}}$$
(3)

$$EQE = AE \times IQE = \frac{\int L_{s}}{\int E_{R}}$$
(5)

where E_S stands for the spectrum used for exciting the phosphor, L_S represents the emission spectrum of the phosphor, and E_R is the spectrum of excitation light without phosphor in the sphere. Taking into account the 2.13% unmeasured portion. Hence, the IQE, AE, and EQE of LZSO:0.03Cr³⁺,0.03Ni²⁺ are 43.31%, 42.11%, and 18.24%.

Figure S7 Temperature-dependent emission spectra and relative intensity of LZSO: 0.03Ni²⁺.

Figure S8. Configuration coordinate diagram of Cr³⁺ and Ni²⁺ illustrating the thermal quenching.

Figure S9. FWHM of LZSO:0.03Cr³⁺,0.03Ni²⁺.

formula	LZSO		
radiation type; λ (Å)	X-ray; 1.5406		
2θ (degrees)	10-80		
temperature (°C)	20		
space group	Cmc21		
a (Å)	18.2355		
b (Å)	10.5209		
c (Å)	9.8906		
$\alpha = \beta = \gamma$ (degrees)	90		
V (Å ³)	1897.558		
profile R-factor, R _p	5.85		
weighted profile R-factor, R_{wp}	9.28		
χ^2	1.584		

Table S1. Refined results of the LZSO sample

atomocc.xyzuisositeSn11 0.0875 0.0715 0 0.01369 8bSn21 0.0856 0.5927 0.001 0.01442 8bSn31 0.1726 0.334 0.004 0.01194 8bLi11 0.249 0.082 0.007 0.012 8bLi210 0.836 0.01 0.01362 4aLi310 0.032 0.293 0.01186 4aLi41 0.182 0.481 0.279 0.0142 8bZn110 0.331 0.19 0.01362 4aZn21 0.167 0.831 0.193 0.01186 8bSn411 0.669 0.283 0.01819 4aSn51 0.168 0.168 0.281 0.01548 8bO110 0.159 -0.108 0.01588 4aO21 0.0834 -0.078 -0.121 0.01617 8bO310 0.664 -0.105 0.01663 4aO41 0.0825 0.42 -0.111 0.0132 8bO51 0.249 0.415 -0.119 0.01195 8bO61 0.1651 0.67 -0.108 0.01728 8bO71 0.1651 0.67 -0.108 0.01353 8bO810 0.0			1		1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom	occ.	Х	У	Z	uiso	site
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn1	1	0.0875	0.0715	0	0.01369	8b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn2	1	0.0856	0.5927	0.001	0.01442	8b
Li11 0.249 0.082 0.007 0.012 8bLi210 0.836 0.01 0.01362 4aLi310 0.032 0.293 0.01186 4aLi41 0.182 0.481 0.279 0.0142 8bZn110 0.331 0.19 0.01362 4aZn21 0.167 0.831 0.193 0.01186 8bSn411 0.669 0.283 0.01819 4aSn51 0.168 0.168 0.281 0.01548 8bO110 0.159 -0.108 0.01588 4aO21 0.0834 -0.078 -0.121 0.01617 8bO310 0.664 -0.105 0.01663 4aO41 0.0825 0.42 -0.111 0.0132 8bO51 0.249 0.415 -0.119 0.01728 8bO71 0.1651 0.67 -0.108 0.01728 8bO71 0.1651 0.67 -0.108 0.01439 4aO910 0.52 0.135 0.01172 4aO101 0.0918 0.241 0.128 0.01439 8bO111 0.0773 0.738 0.141 0.01624 8bO131 0.2389 0.251 0.147 0.01444 8bO141	Sn3	1	0.1726	0.334	0.004	0.01194	8b
Li210 0.836 0.01 0.01362 $4a$ Li310 0.032 0.293 0.01186 $4a$ Li41 0.182 0.481 0.279 0.0142 $8b$ Zn110 0.331 0.19 0.01362 $4a$ Zn21 0.167 0.831 0.193 0.01186 $8b$ Sn411 0.669 0.283 0.01819 $4a$ Sn51 0.168 0.168 0.281 0.01548 $8b$ O110 0.159 -0.108 0.01588 $4a$ O21 0.0834 -0.078 -0.121 0.01617 $8b$ O310 0.664 -0.105 0.01663 $4a$ O41 0.0825 0.42 -0.111 0.0132 $8b$ O51 0.249 0.415 -0.119 0.01728 $8b$ O61 0.1651 0.67 -0.108 0.01728 $8b$ O71 0.165 0.171 -0.103 0.01353 $8b$ O810 0.007 0.108 0.01439 $4a$ O910 0.52 0.135 0.0172 $4a$ O101 0.0918 0.241 0.128 0.01439 $8b$ O11 10.0773 0.738 0.141 0.01671 $8b$ O121 0.1648 0.014 0.139 0.01624 $8b$ <th< td=""><td>Li1</td><td>1</td><td>0.249</td><td>0.082</td><td>0.007</td><td>0.012</td><td>8b</td></th<>	Li1	1	0.249	0.082	0.007	0.012	8b
Li310 0.032 0.293 0.01186 4aLi41 0.182 0.481 0.279 0.0142 8bZn110 0.331 0.19 0.01362 4aZn21 0.167 0.831 0.193 0.01186 8bSn411 0.669 0.283 0.01819 4aSn51 0.168 0.168 0.281 0.01548 8bO110 0.159 -0.108 0.01588 4aO21 0.0834 -0.078 -0.121 0.01617 8bO310 0.664 -0.105 0.01663 4aO41 0.0825 0.42 -0.111 0.0132 8bO51 0.249 0.415 -0.119 0.01728 8bO61 0.1651 0.67 -0.108 0.01728 8bO71 0.165 0.171 -0.103 0.01353 8bO810 0.007 0.108 0.01439 4aO910 0.52 0.135 0.01172 4aO101 0.0918 0.241 0.128 0.01439 8bO111 0.0773 0.738 0.141 0.01671 8bO121 0.1648 0.014 0.139 0.01624 8bO131 0.2389 0.251 0.147 0.01319 8b	Li2	1	0	0.836	0.01	0.01362	4a
Li41 0.182 0.481 0.279 0.0142 8bZn110 0.331 0.19 0.01362 4aZn21 0.167 0.831 0.193 0.01186 8bSn411 0.669 0.283 0.01819 4aSn51 0.168 0.168 0.281 0.01548 8bO110 0.159 -0.108 0.01588 4aO21 0.0834 -0.078 -0.121 0.01617 8bO310 0.664 -0.105 0.01663 4aO41 0.0825 0.42 -0.111 0.0132 8bO51 0.249 0.415 -0.108 0.01728 8bO61 0.1651 0.67 -0.108 0.01353 8bO71 0.165 0.171 -0.103 0.01353 8bO810 0.007 0.108 0.01439 4aO91 0 0.52 0.135 0.01172 4aO101 0.0918 0.241 0.128 0.01439 8bO111 0.0773 0.738 0.141 0.01624 8bO121 0.1648 0.014 0.139 0.01624 8bO131 0.2389 0.251 0.147 0.01319 8b	Li3	1	0	0.032	0.293	0.01186	4a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Li4	1	0.182	0.481	0.279	0.0142	8b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn1	1	0	0.331	0.19	0.01362	4a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn2	1	0.167	0.831	0.193	0.01186	8b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn4	1	1	0.669	0.283	0.01819	4a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn5	1	0.168	0.168	0.281	0.01548	8b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	1	0	0.159	-0.108	0.01588	4a
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O2	1	0.0834	-0.078	-0.121	0.01617	8b
O4 1 0.0825 0.42 -0.111 0.0132 8b O5 1 0.249 0.415 -0.119 0.01195 8b O6 1 0.1651 0.67 -0.108 0.01728 8b O7 1 0.165 0.171 -0.103 0.01353 8b O8 1 0 0.007 0.108 0.01439 4a O9 1 0 0.52 0.135 0.0172 4a O10 1 0.0918 0.241 0.128 0.01439 8b O11 1 0.0773 0.738 0.141 0.01671 8b O12 1 0.1648 0.014 0.139 0.01624 8b O13 1 0.2389 0.251 0.147 0.01444 8b O14 1 0.1653 0.5 0.1 0.01319 8b	O3	1	0	0.664	-0.105	0.01663	4a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O4	1	0.0825	0.42	-0.111	0.0132	8b
O6 1 0.1651 0.67 -0.108 0.01728 8b O7 1 0.165 0.171 -0.103 0.01353 8b O8 1 0 0.007 0.108 0.01439 4a O9 1 0 0.52 0.135 0.01172 4a O10 1 0.0918 0.241 0.128 0.01439 8b O11 1 0.0773 0.738 0.141 0.01671 8b O12 1 0.1648 0.014 0.139 0.01624 8b O13 1 0.2389 0.251 0.147 0.01444 8b O14 1 0.1653 0.5 0.1 0.01319 8b	05	1	0.249	0.415	-0.119	0.01195	8b
O7 1 0.165 0.171 -0.103 0.01353 8b O8 1 0 0.007 0.108 0.01439 4a O9 1 0 0.52 0.135 0.01172 4a O10 1 0.0918 0.241 0.128 0.01439 8b O11 1 0.0773 0.738 0.141 0.01671 8b O12 1 0.1648 0.014 0.139 0.01624 8b O13 1 0.2389 0.251 0.147 0.01444 8b O14 1 0.1653 0.5 0.1 0.01319 8b	O6	1	0.1651	0.67	-0.108	0.01728	8b
O8 1 0 0.007 0.108 0.01439 4a O9 1 0 0.52 0.135 0.01172 4a O10 1 0.0918 0.241 0.128 0.01439 8b O11 1 0.0773 0.738 0.141 0.01671 8b O12 1 0.1648 0.014 0.139 0.01624 8b O13 1 0.2389 0.251 0.147 0.01444 8b O14 1 0.1653 0.5 0.1 0.01319 8b	07	1	0.165	0.171	-0.103	0.01353	8b
O9 1 0 0.52 0.135 0.01172 4a O10 1 0.0918 0.241 0.128 0.01439 8b O11 1 0.0773 0.738 0.141 0.01671 8b O12 1 0.1648 0.014 0.139 0.01624 8b O13 1 0.2389 0.251 0.147 0.01444 8b O14 1 0.1653 0.5 0.1 0.01319 8b	08	1	0	0.007	0.108	0.01439	4a
O1010.09180.2410.1280.014398bO1110.07730.7380.1410.016718bO1210.16480.0140.1390.016248bO1310.23890.2510.1470.014448bO1410.16530.50.10.013198b	09	1	0	0.52	0.135	0.01172	4a
O11 1 0.0773 0.738 0.141 0.01671 8b O12 1 0.1648 0.014 0.139 0.01624 8b O13 1 0.2389 0.251 0.147 0.01444 8b O14 1 0.1653 0.5 0.1 0.01319 8b	O10	1	0.0918	0.241	0.128	0.01439	8b
O12 1 0.1648 0.014 0.139 0.01624 8b O13 1 0.2389 0.251 0.147 0.01444 8b O14 1 0.1653 0.5 0.1 0.01319 8b	011	1	0.0773	0.738	0.141	0.01671	8b
O13 1 0.2389 0.251 0.147 0.01444 8b O14 1 0.1653 0.5 0.1 0.01319 8b	O12	1	0.1648	0.014	0.139	0.01624	8b
O14 1 0.1653 0.5 0.1 0.01319 8b	O13	1	0.2389	0.251	0.147	0.01444	8b
	014	1	0.1653	0.5	0.1	0.01319	8b

Table S2. Refined atomic positions of the LZSO sample

Phosphors	Excitaion (nm)	FWH M (nm)	Emission range (nm)	IQE (%)	EQ E (%)	Ref
Ba2MgWO6:Ni2+	365	255	1200-2000	16.67		(3)
SrTiO ₃ :Ni ²⁺	375	192	1100–1600	7.4		(4)
MgTiO ₃ :Ni ²⁺	450	120	1500-2000	3.1		(4)
CaTiO ₃ :Ni ²⁺	375	212	1150-1600	4.3		(5)
MgAl ₂ O ₄ :Ni ²⁺	365	237	1100-1600			(6)
ZnGa ₂ O ₄ :Ni ²⁺	365		1100-1600			(7)
Y ₃ Al ₂ Ga ₃ O ₁₂ :Ni ²⁺	400	300	1200-1650	54	8.2	(1)
Mg ₃ Ga ₂ GeO ₈ :Ni ²⁺	395	300	1100-1700	36.7	7.3	(8)
$Mg_2Ta_4O_9{:}Ni^{2+}$	404	218	1100-1700	64	11.2	(9)
MgO:Ni ²⁺	405	204	1100-1700			(10)
LZSO:0.03Cr ³⁺ ,0.03Ni ²⁺	426	300	1100–1750	43	18	This
						work

Table S3. The optical performance comparison of $LZSO:0.03Cr^{3+}, 0.03Ni^{2+}$ and previously reported NIR-II phosphors

Reference

1. Yuan L, Jin Y, Wu H, Deng K, Qu B, Chen L, et al. Ni²⁺-Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application, *ACS Appl. Mater. Interfaces*, 2022, **14**, 4265-4275.

2. Chen S, Lin J, Han M, Li J, Zhang Q, Chen Y, et al. Broadband near-infrared emitting Cr^{3+} activated InGaO₃(ZnO)₄ phosphor and its application in pc-LEDs. *Mater. Res. Bull.*, 2023, **164**, 112280.

3. Lu X, Gao Y, Chen J, Tan M, Qiu J. Long-Wavelength Near-Infrared Divalent Nickel-Activated Double-Perovskite Ba₂MgWO₆ Phosphor as Imaging for Human Fingers, *ACS Appl. Mater. Interfaces*, 2023, **15**, 39472-39479.

4. Gao Y, Wang B, Liu L, Shinozaki K. Near-infrared engineering for broad-band wavelengthtunable in biological window of NIR-II and -III: A solid solution phosphor of $Sr_{1-x}Ca_xTiO_3:Ni^{2+}$, *J. Lumin.*, 2021, **238**, 118235.

5. Matuszewska C, Marciniak L. The influence of host material on NIR II and NIR III emitting Ni²⁺-based luminescent thermometers in ATiO₃: Ni²⁺ (A = Sr, Ca, Mg, Ba) nanocrystals, *J. Lumin.*, 2020, **223**, 117221.

6. Deng Y, Gao Y, Zhu F, Zhu B, Huang L, Qiu J. Sol-gel combustion synthesis and near-infrared luminescence of Ni²⁺-doped MgAl₂O₄ spinel phosphor, *Ceram. Int.*, 2024, **50**, 12319-12325.

7. Jin M, Li F, Xiahou J, Zhu L, Zhu Q, Li J-G. A new persistent luminescence phosphor of ZnGa₂O₄:Ni²⁺ for the second near-infrared transparency window, *J. Alloy. Compd*, 2023, **931**, 167491.

Wang C, Lin J, Zhang X, Dong H, Wen M, Zhao S, et al. Efficient ultra-broadband NIR-II emission achieved by multi-site occupancy in Mg₃Ga₂GeO₈: Ni²⁺ phosphor, *J. Alloy. Compd.*, 2023, 942, 168893.

9. Li J, Wang C, Niu Y, Wang Y, Wu F, Qi z, et al. Efficient broad-band NIR-II emitting phosphor Mg₄Ta₂O₉: Ni²⁺ with satisfactory thermal stability of luminescence, *Ceram. Int.*, 2024, **50**, 18647-18654.

10. Liu B-M, Gu S-M, Huang L, Zhou R-F, Zhou Z, Ma C-G, et al. Ultra-broadband and highefficiency phosphors to brighten NIR-II light source applications, *Cell Rep. Phys. Sci*, 2022, **3**, 101078.