Supporting Information

Direct phosphorylation in pyridine-functionalized porous organic polymer for an efficient uranium capture

Anni Ye,^a Lizhen Zhong,^a Liecheng Guo,^a Feng Gao,^a Zhiwu Yu,^{*b} and Feng Luo^{a*} ^aSchool of Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China

^bHigh Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230031, Anhui, China

Fig. S1 PXRD pattern of ECUT-POP-3 and ECUT-POP-3P.

Fig. S2 IR of ECUT-POP-3P.

Fig. S3 The ¹³C solid-state nuclear magnetic resonance (NMR) spectrum of ECUT-POP-3 and ECUT-POP-3P.

Fig. S4 XPS of P element in ECUT-POP-3P.

Fig. S5 a) The fitting by the pseudo-first-order model. b) The fitting by pseudo-second-order model. c) The fitting by Langmuir model. d) The fitting by Freundlich model.

Fig. S6 IR of U-loaded samples on ECUT-POP-3P.

Fig. S7 The SEM-EDS images of C, N, O, P, U element in U-loaded samples.

Fig. S8 XPS of U element in U-loaded samples.

Fig. S9 XPS of P element in ECUT-POP-3P and the U-loaded samples.

Table S1. A comparison in the adsorption kinetics and capacity between established materials and this case.

Adsorbents	Adsorption capacity(mg/g)	Adsorption equilibrium time(min)	References
ECUT-POP-3P	1660	4	This work
TpDBD-Phos	633.3	30	Adv. Fun. Mater. 2024, 34, 2313314
ZIF-90-AO	324.5	10	J. Hazard. Mater. 2022, 422, 126872
TZDa-Phos	394	10	Chem. Eng. J. 2023, 463, 142408
tPE-AO	481.3	15	Environ. Sci. Technol. 2023, 57, 9615
LZU-530	860	300	J. Am. Chem. Soc. 2024, 146, 4822
[NH ₄] ⁺ [COF- SO ₃ ⁻]	851	600	Adv. Sci. 2019, 6, 1900547
iMOF-1A	1336.8	120	Small 2024, 20, 2302014