Anisotropic X-ray Photovoltaics in 2D Trilayered Hybrid Perovskite

EA₄Pb₃Br₁₀ Single Crystals with Low Detection Limit

Kewen Tao^a, Chenwei Xiong^b, Hui Yang^a, Hao Lin^b, Decai Ma^b, Huashan Li^a, Shaopeng Lin^{b,*} and Biao Wang^{a,**}

Fig. S1. a) Experiment and Simulated powder X-ray diffraction patterns of EA₄Pb₃Br₁₀. b) Powder X-ray patterns of EA₄Pb₃Br₁₀ recorded on the freshly-prepared sample (1 day) and after 30 days.

Fig. S2. XRD pattern of $EA_4Pb_3Br_{10}SC$ with the (h00) diffraction indices.

Fig. S3. UV–vis absorption spectrum of $EA_4Pb_3Br_{10}$. Insert: estimated bandgap.

Fig. S4. a) Temperature-dependent dielectric constants (ε) of EA₄Pb₃Br₁₀ along the *a*-axis directions measured at 300 kHz. b) The DSC curves of EA₄Pb₃Br₁₀.

Fig. S5. Dark *I–V* curve along a) *b*-axis and b) *c*-axis of EA₄Pb₃Br₁₀ SC for SCLC analysis.

Fig. S6. The piezoelectric response versus channel distance plots for the *a*-axis and *c*-axis.

Fig. S7. Photograph of $EA_4Pb_3Br_{10}$ SC devices along the *a*-axis a), *b*-axis b), and *c*-axis c). d) Device Schematic along the *c*-axis.

Fig. S8. *I-V* curves under various light intensity along the *c*-axes of EA₄Pb₃Br₁₀ SC.

Fig. S9. a) Photocurrent-voltage curves of *c*-direction device after polarization treatment. b) Photocurrent-voltage curves of *b*-direction device in positive and negative polarization states.

Fig. S10. a) Anisotropic responsivity R and b) detection D^* of $EA_4Pb_3Br_{10}$ SCs measured at different bias voltage.

Fig. S11. Transient photoelectric responses under a nanosecond 450 nm laser.

Fig. S12. The *I-V* curves of the *c*-axis detector (a) and the air X-ray detector (b) under various X-ray doses. The X-ray photocurrent responses for the *c*-axis detector (c) and the air X-ray detector (d) under the same dose of $0.73 \ \mu Gy_{air}/s$ and 0 V bias.

Fig. S13. The X-ray response of *a*-axis (a) and *c*-axis (b) detectors at an ultralow dose of 56 nGy_{air} s⁻¹.

Fig. S14. Comparison of dark current drifts for the *a*-, *b*- and *c*-axes at 2 V bias.

Fig. S15. Operation stability measurement of *a*-axis detector under repeated and continuous X-ray radiation at 0 v bias.

Devices	λ(nm)	Rise/decay time	Responsivity	Detectivity	Condition	Ref.
			(mA W⁻¹)	(Jones)		
Si/MAPbBr3/Au	405	520 ns/2435 ns	13.6	5.9×10^{10}	-1 V bias	1
MAPbl ₃ /CdS	700	0.85 ms/2.24 ms	480	2.1 × 10 ¹³	0 V bias	2
Pt/MAPbBr ₃ /Au	350	70 μs/150 μs	2	1.4×10^{11}	0 V bias	3
Au/(4-TFBMA)2(DMA)Pb2l7/Au	550	264 μs/380 μs	1.97× 10 ³	2.95 × 10 ¹²	10 V bias	4
Au/MAPbBr₃/Au	515	27.6µs/15.8 µs	5.57 × 10 ⁴	8 × 10 ¹³	5 V bias	5
ITO/PEDOT:PSS/MAPbI ₃ /PFN	860	1.73 μs/ 0.97 μs	577	1.52 × 10 ¹³	0 V bias	6
/PM6:Y6/C ₆₀ /BCP/Ag						
SWCNT/CsPbBr ₃ /SWCNT	505	13 ms/ 22 ms	1.321 × 10 ⁶	7.7 × 10 ¹²	5 V bias	7
C/EA ₄ Pb ₃ Br ₁₀ /C	425	20 ns/ 120 ns	0.22	1.01×10^{10}	0 V	This
					(ferroelectric)	work

Table S1. Performance comparison of photodetectors based on perovskites.

- X. Geng, F. Wang, H. Tian, Q. Feng, H. Zhang, R. Liang, Y. Shen, Z. Ju, G.-Y. Gou, N. Deng, Y.-t. Li, J. Ren, D. Xie, Y. Yang and T.-L. Ren, Ultrafast Photodetector by Integrating Perovskite Directly on Silicon Wafer, *ACS Nano*, 2020, 14, 2860-2868.
- F. Cao, L. Meng, M. Wang, W. Tian and L. Li, Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector, *Adv. Mater.*, 2019, **31**, 1806725.
- 3. P. A. Shaikh, D. Shi, J. R. D. Retamal, A. D. Sheikh, M. A. Haque, C.-F. Kang, J.-H. He, O. M. Bakr and T. Wu, Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection, *J. Mater. Chem. C*, 2016, **4**, 8304-8312.
- W. Guo, H. Chen, X. Liu, Y. Ma, J. Wang, Y. Liu, S. Han, H. Xu, J. Luo and Z. Sun, Rational alloying of secondary and aromatic ammonium cations in a metal-halide perovskite toward crystal-array photodetection, *Sci. China Mater.*, 2021, 65, 179-185.
- Y. Liu, Y. Zhang, Z. Yang, J. Feng, Z. Xu, Q. Li, M. Hu, H. Ye, X. Zhang, M. Liu, K. Zhao and S. Liu, Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors, *Mater. Today*, 2019, 22, 67-75.
- Y. Zhang, Z. Qin, X. Huo, D. Song, B. Qiao and S. Zhao, High-Performance Near-Infrared Photodetectors Based on the Synergy Effect of Short Wavelength Light Filter and Long Wavelength Response of a Perovskite/Polymer Hybrid Structure, ACS Appl. Mater. Interfaces, 2021, 13, 61818-61826.
- A. A. Marunchenko, M. A. Baranov, E. V. Ushakova, D. R. Ryabov, A. P. Pushkarev, D. S. Gets, A. G. Nasibulin and S. V. Makarov, Single-Walled Carbon Nanotube Thin Film for Flexible and Highly Responsive Perovskite Photodetector, *Adv. Funct. Mater.*, 2022, **32**, 2109834.