Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.

High-Efficiency Tunable Self-Trapped Emission in One-Dimensional β -Cs₃Cu₂Br₅ via Ag Alloying for Optoelectronic Application

Xin Xu,^a Zhongyi Wang,^a Qingkun Kong,^b Siping Liu,^c Ruiling Zhang*, ^a Xiaojing Liu*, ^a and Keli Han.^{a,d}

^a Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P.R. China.

^b Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.

^c Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, P. R. China.

^d State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P.R.China.

Corresponding Author

Xiaojing Liu*, E-mail: liuxj2020@sdu.edu.cn; Ruiling Zhang*, E-mail: rlzhang@sdu.edu.cn.

Experimental Section

Materials

Cesium bromide (CsBr, 99.99%), Silver bromide (AgBr, 99.99%), Hydrobromic acid (HBr, 48 wt.% in H₂O) and Hypophoaphoeous acid (H₃PO₂, 50 wt.% in H₂O) was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Cuprous bromide (CuBr, 99.99%) was bought from TCI Shanghai Chemicals Industry Co., Ltd. All of the chemicals were used without further purifications.

Synthesis of Cs₃Cu₂Br₅ Single Crystals

1.0 mmol CsBr, 0.25 mmol CuBr was added to 5 mL glass vial. 1.0 mL HBr and 0.2 mL H_3PO_2 was then added. The mixture was heated to 165 °C on a hot plate for 30 min to dissolve the powders. Blue-emissive crystals were yielded after naturally cooling the solutions at ambient conditions, while the needle-like cyan-emissive crystals were yield after rapidly cooling down the hot solutions. The needle-like cyan-emissive crystals were unstable in ambient conditions.

Synthesis of Ag-alloyed Cs₃Cu₂Br₅ Single Crystals

To synthesize Ag-alloyed $Cs_3Cu_2Br_5$ single crystals, 1.0 mmol CsBr, 0.25 mmol CuBr and x mg (x = 5, 10, 20, 30 and 40 mg) was added to 5 mL glass vial. 1.0 mL HBr and 0.2 mL H₃PO₂ was then added. The mixture was heated to 165 °C on a hot plate for 30 min to dissolve the powders. Colorless crystals were yielded after naturally cooling at ambient conditions, the synthesized crystals were named as β -Cs₃Cu₂Br₅:xAg⁺ (x = 6.52%, 12.40%, 17.32%, 20.56% and 32.35%.). The

product with additon of 5 mg Ag is unstable and will transform to 0D blue emissive $Cs_3Cu_2Br_5$ within seveal minutes in solutions.

Characterization

Powder X-ray diffraction (XRD) measurements were performed on a Rigaku smartlab9kw diffractometer equipped with Cu K α radiation. Room-temperature photoluminescence (PL), time-resolved PL, temperature-dependent PL spectra were recorded on the FLS 1000 Edinburgh Instruments spectrofluorimeter equipped with a xenon lamp as the excitation source. Single Crystal X-ray diffraction (SCXRD) results were acquired by Rigaku Oxford XtaLAB Synergy-DW diffractometer with monochromated Mo K α radiation (λ = 0.7107 Å). X-ray photoelectron spectroscopy (XPS) measurements were performed by using Thermofisher ESCALAB Xi+ with the X-ray source of monochromated Al K α (hv = 1486.6eV). The absolute quantum yield was measured by Hamamatsu C9920-02 equipped with integrating sphere. Femtosecond transient absorption (fs TA) measurements were performed by a pump-probe laser system (800 nm, 50 fs, and 1 kHz repetition rate) based on a regenerative amplified Ti:sapphire laser source (Spectra Physics). The sample was excited by 340 nm laser pulses generated by a TOPAS Optical Parametric Amplifier (OPA) which was pumped by the 800 nm pulse. A white light continuum (WLC) generated by a 2 mm thick CaF₂ was used as the probe beam. The excitation energy is 44 μw.

Calculation of tetrahedral parameters:

Tetrahedral parameters of Δd and σ^2 was calculated by the following equations.^{1, 2}

$$\Delta d = \frac{1}{4} \sum_{n=1}^{4} \left(\frac{d_n - d}{d}\right)^2$$
$$\sigma^2 = \frac{1}{5} \sum_{n=1}^{6} \left(\theta_n - 109.47^\circ\right)^2$$

In the above equations, d_n and d represents the individual bond length and average bond length in $[CuBr_4]^{3-}$ tetrahedron; θ_n is the specific Br-Cu-Br bond angle and average in $[CuBr_4]^{3-}$ tetrahedron. Δd describes the overall tetrahedral elongation and variation in tetrahedral bond distance, and the variation and deviation of bond angle in $[CuBr_4]^{3-}$ tetrahedron could be reflected by σ^2 . Taking these two parameters into consideration, the distortion of 1D Ag-alloyed β -Cs₃Cu₂Br₅ crystal lattice induced by temperature and Ag ion can be correctly determined.

Computational methods

The DFT calculations were performed on Vienna ab initio Simulation package (VASP) ^{3, 4} with projector augmented wave (PAW) pseudopotential.^{5, 6} The exchange-correlation interaction was described by Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA).^{7, 8} The kinetic energy cut-off was set to 400 eV. The Brillouin zone was sampled by Gamma-centered (Monkhorst–Pack) k-point with 2 × 3 × 3. The convergence criterion of force and energy were set to 0.01 eV Å⁻¹ and 10⁻⁵ eV, respectively.^{9, 10}

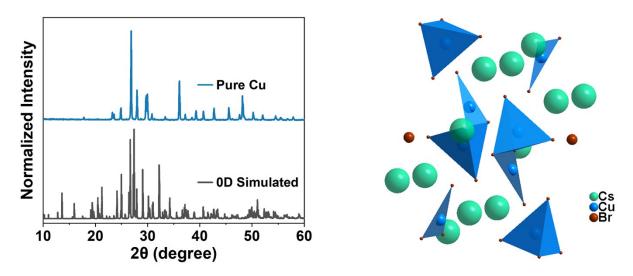


Fig. S1 PXRD patterns of blue-emissive copper bromide crystals, and the crystal strucutre of OD

 $Cs_3Cu_2Br_5$.

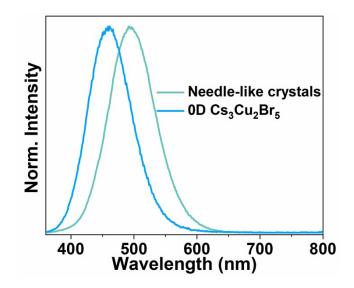


Fig. S2 PL spectra of 0D $Cs_3Cu_2Br_5$ and needle-like crystals.

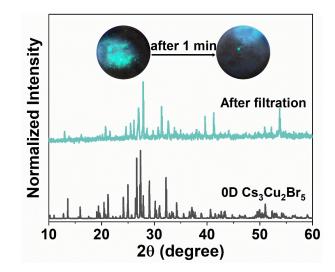
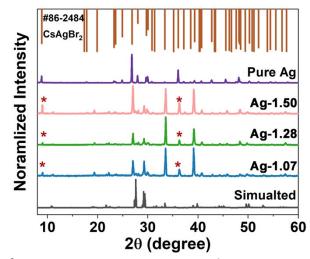



Fig. S3 PXRD patterns of needle-shape copper bromide crystals after filtration.

Fig. S4 Photograph of the synthisized 1D $Cs_3(Cu/Ag)_2Br_5$ crystal under optical microscope.

Fig. S5 PXRD patterns of Ag-1.07, Ag-1.28, Ag-1.50 and pure Cesuim silver bromide crystals. (The asterisks represent the CsAgBr₂ impurities, 1.07, 1.28 and 1.50 represents the Ag/Cu feeding ratio.)

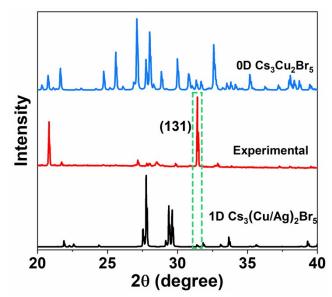
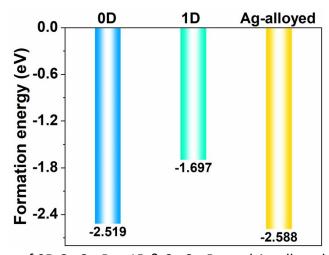
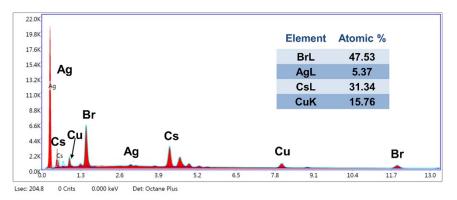




Fig. S6 The comparison of the PXRD patterns of needle-like crystals, 1D $Cs_3(Cu/Ag)_2Br_5$ and 0D $Cs_3Cu_2Br_5$.

Fig. S7 Formation energy of OD Cs₃Cu₂Br₅, 1D β -Cs₃Cu₂Br₅ and Ag-alloyed β -Cs₃Cu₂Br₅ (Slected β -Cs₃Cu₂Br₅:32.35%Ag⁺ as model). The formation energies are calculated with respect to the precursors CsBr, CuBr and AgBr, as E_f = E[Cs₃Cu₂Br₅] - 3E[CsBr] - 2E[CuBr], where E is the total energy. Calculations are performed at 0 K and 0 Gpa.

Fig. S8 EDS results of β -Cs₃Cu₂Br₅:20.56%Ag⁺, and the inset table shows the estimated atom ratio of Cs, Ag, Cu and Br, respectively.

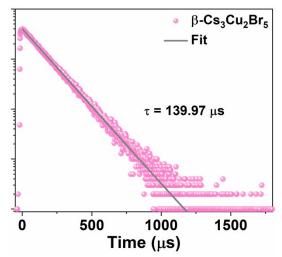
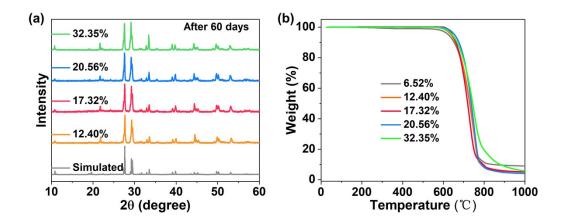



Fig. S9 PL decay curve of 1D β -Cs₃Cu₂Br₅ sample at room temperature.

Fig. S10 (a) PXRD patterns of Ag-alloyed β -Cs₃Cu₂Br₅ samples after storing at ambient conditions for 60 days. (b) thermogravimetric analysis of Ag-alloyed β -Cs₃Cu₂Br₅ samples.

Fig. S11 CIE color coordinates of β -Cs₃Cu₂Br₅:xAg.

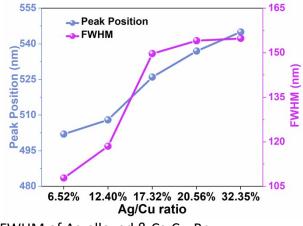


Fig. S12 Peak positions and FWHM of Ag-alloyed β -Cs₃Cu₂Br₅.

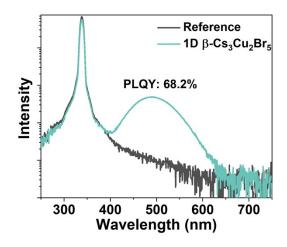
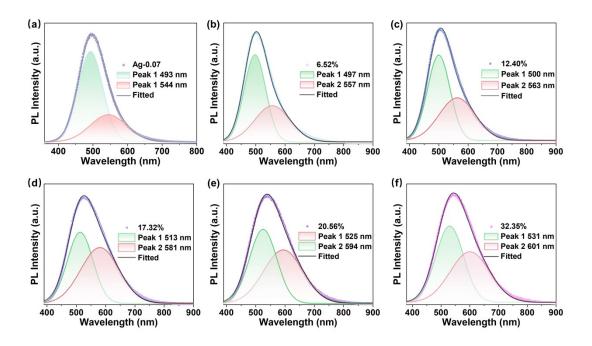



Fig. S13 PLQY of 1D β -Cs₃Cu₂Br₅.

Fig. S14 PL spectra of β -Cs₃Cu₂Br₅:xAg⁺ with fitting by two Gaussian distributions, peak 1 and peak 2 (Note: In Fig.S13a, 0.07 represents the feeding Ag/Cu ratio.).

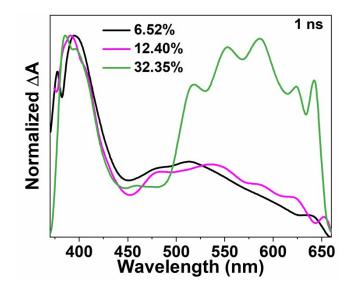


Fig. S15 The fs-TA spectra of β -Cs₃Cu₂Br₅:xAg⁺ (x= 6.52%, 12.40% and 32.35%) at the detection

time of 1 ns.

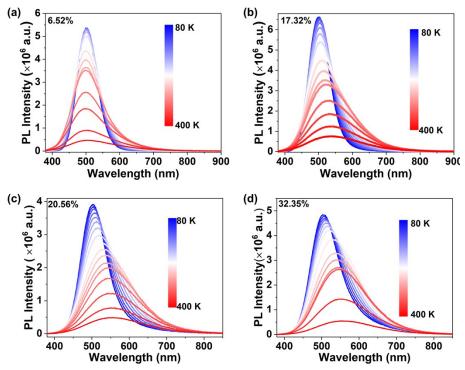


Fig. S16 Temperature-dependent PL spectra of β -Cs₃Cu₂Br₅:xAg⁺ (x= 6.52%, 17.32%, 20.56% and

32.35%) samples

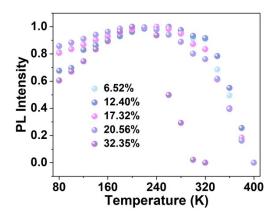
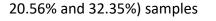



Fig. S17 Temperature-dependent PL intensity of β -Cs₃Cu₂Br₅:xAg⁺ (x= 6.52%, 12.40%, 17.32%,

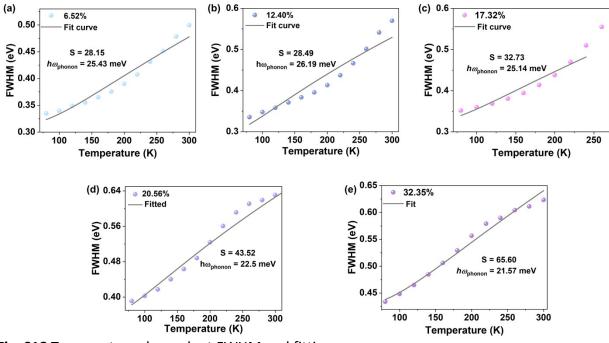


Fig. S18 Temperature-dependent FWHM and fitting curves.

Note. Huang-Rhys factor S is used to describe the strength of electron-phonon coupling, and the electron-phonon coupling has a strong relationship with the FWHM of emission, meeting the following equation¹¹

$$FWHM = 2.36\sqrt{S}\hbar\omega_{phonon}\sqrt{\coth\frac{\hbar\omega_{phonon}}{2k_BT}}$$

where \hbar is reduced Planck constant, ω_{phonon} represents phonon frequency, T is temperature, and $k_{\rm B}$ Boltzmann constant.

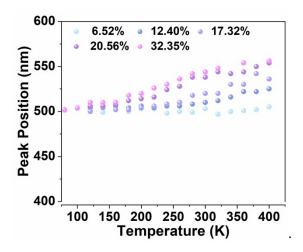


Fig. S19 Temperature-dependent peak position evolution of Ag-alloyed β -Cs₃Cu₂Br₅.

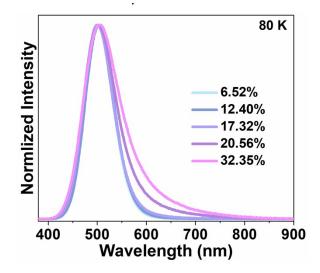
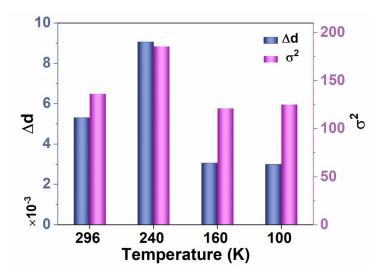
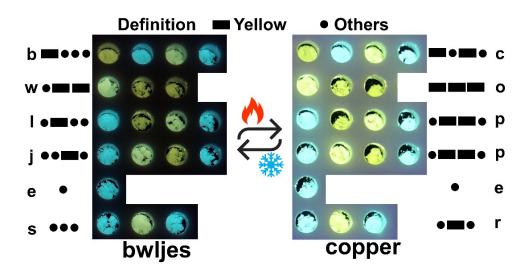




Fig. S20 PL spectra of Ag-alloyed β -Cs₃Cu₂Br₅ at 80 K.

Fig. S21 Tetrahedral parameters of β -Cs₃Cu₂Br₅:32.35%Ag⁺ at different temperature.

Fig. S22 Images of β -Cs₃(Cu/Ag)₂Br₅ based encryption and decryption patterns. The encryption word 'copper' shows wrong information as 'bwljes' under room temperature.

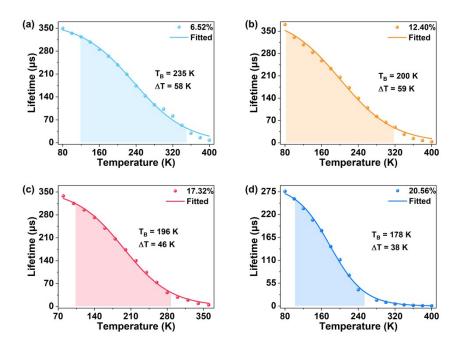
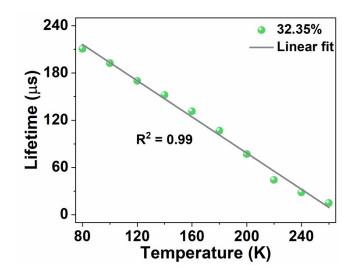



Fig. S23 Temperature dependence of lifetime in Ag-alloyed β -Cs₃Cu₂Br₅ samples. The filled color areas represent the sensing range.

Fig. S24 Linear relationship between temperature and average lifetime of Ag-0.85 in the range of 80 to 260 K.

Fig. S25 Photograph of the fabricated LED device based on different β -Cs₃Cu₂Br₅:xAg⁺ samples.

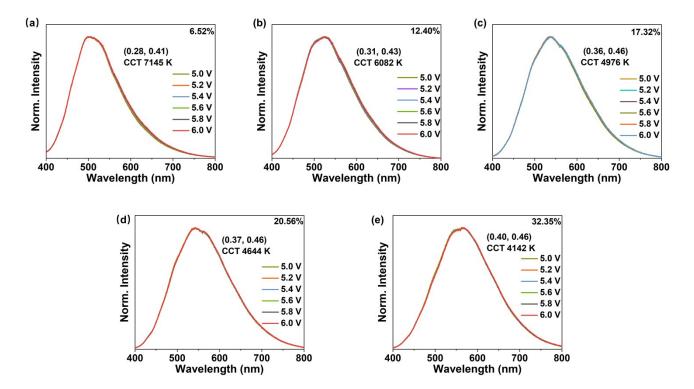
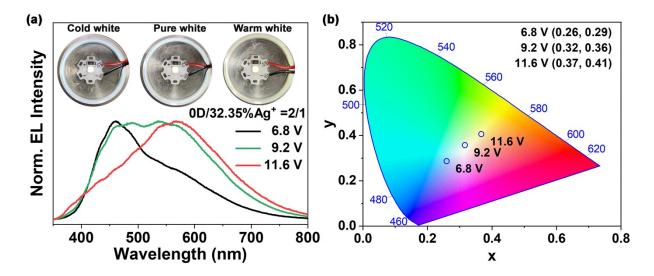



Fig. S26 EL spectra of fabricated LED device based on different β -Cs₃Cu₂Br₅:xAg⁺ samples under different voltage.

Fig. S27 (a) EL spectra and photograph of LED device based on a mixture of 0D and β -Cs₃Cu₂Br₅:32.35%Ag⁺ samples with a mass ratio of 2:1 and a 275 nm UV LED chip under different voltage, and (b) the corresponding CIE color coordinate change.

Sample	Ag (mg/L)	Cu (mg/L)	Ag/Cu ratio in feeding solution	Actual Ag/Cu ratio
Ag-0.11	2.5131	21.203	11%	6.52%
Ag-0.21	4.5771	19.048	21%	12.40%
Ag-0.43	9.5196	26.769	43%	17.32%
Ag-0.64	10.445	23.774	64%	20.56%
Ag-0.85	15.877	12.888	85%	32.35%

Table S1. ICP-MS results of Ag and Cu in Ag-alloyed β -Cs₃Cu₂Br₅.

 Table S2. Crystal data and structure refinement for Ag-0.11 and Ag-0.85.

Compound	$Cs_3Cu_2Br_5$	$Cs_3Cu_{1.5}Ag_{0.5}Br_5$	
Compound	$(\beta$ -Cs ₃ Cu ₂ Br ₅ :6.52%Ag ⁺)	$(\beta$ -Cs ₃ Cu ₂ Br ₅ :32.35%Ag ⁺	
Formula weight (g·mol⁻¹)	925.36	947.49	
Temperature (K)	279	297	
Crystal system	orthorhombic	orthorhombic	
Space group	Cmcm (63)	Cmcm (63)	
	a =16.2298(6) Å	a = 16.3496(6) Å	
	b = 9.1626(3) Å	b = 9.2138(3) Å	
Cell parameters	c = 9.0004(3) Å	c = 9.0533(3) Å	
	α, β, γ = 90°	α, β, γ = 90°	
Volume (ų)	1338.42(8)	1363.81(8)	
Z	2	16	
Density (g·cml⁻³)	4.592	4.615	
μ (mm ⁻¹)	26.090	25.543	
F (000)	1228.0	1628.0	
Theta max (°)	30.660	30.644	
h, k, I _{max}	23, 12, 12	22, 13, 12	
GOF.	1.106	1.094	
	$R_1 = 0.0388(942)$	$R_1 = 0.0267$	
Final R index	$wR_2 = 0.1046(1080)$	<i>wR</i> ₂ = 0.0752	

	Excitation	Monitoring							τ_{ave}
	wavelengt	wavelengt							(
Sample	h	h	τ_1 (µs)	A ₁	$\text{Rel}_1\%$	τ ₂ (μs)	A ₂	$\text{Rel}_2\%$	μ
									S
)
6.52%Ag+	340 nm	502 nm	33.38	1371.84	8.56	149.19	3278.77	91.54	139.28
12.40%Ag+	340 nm	508 nm	18.90	2250.22	16.99	90.22	2302.78	83.01	78.09
17.32%Ag⁺	340 nm	526 nm	6.06	0.1456	27.78	45.92	0.0453	70.22	34.05
20.56%Ag⁺	340 nm	537 nm	2.81	0.1185	54.16	19.92	0.0142	45.84	10.65
32.35%Ag⁺	340 nm	545 nm	2.00	0.0368	61.61	12.60	0.0036	38.39	6.07

Table S3. The fitted results of the PL decay curves of Ag-alloyed β -Cs₃Cu₂Br₅: xAg⁺.

Table S4. The bond length and bond angle evolution of β -Cs₃Cu₂Br₅:xAg⁺ (x = 12.40%, 17.32%, 20.56%, 32.35%), r₁ and r₂ corresponding to intratetrahedral and intertetrahedral Cu-Cu distance of [Cu₂Br₆]⁴⁻ units, respectively.

	c₊_ ^{tb} Br	Br Br Br Cu2 Br Br	Cu3	
Bond length (Å)	12.40%	17.32%	20.56%	32.35%
Cu1 – Br1	2.4277	2.4293	2.4298	2.472
Cu1 – Br2	2.4714	2.9012	2.5221	2.508
Cu1 – Br3	2.9288	2.5385	2.4298	2.919
Cu1 – Br4	2.4277	2.4293	2.9810	2.472
r ₁	2.9752	3.2327	3.1326	2.9742
r ₂	3.6655	3.5857	3.6185	3.6974
Bond Angles (°)	12.40%	17.32%	20.56%	32.35%
Br1-Cu1-Br2	122.741	95.259	113.927	122.404
Br1-Cu1-Br3	113.839	113.065	124.977	94.361
Br1-Cu1-Br4	94.167	95.259	93.398	113.794
Br2-Cu1-Br3	113.839	112.691	113.927	94.361
Br2-Cu1-Br4	113.763	124.272	111.187	113.794
Br3-Cu1-Br4	94.167	112.691	93.398	114.039
Br-Br-Br	168.29	167.497	167.025	166.58

Compound		$Cs_3Cu_{1.5}Ag_{0.5}Br_5 (\beta - Cs_3Cu_2Br_5:32.35\%Ag^+)$						
Temperature (K)	297	240	160	100				
Formula weight	947.49	947.49	947.49	947.49				
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic				
Space group	Cmcm (63)	Cmcm (63)	Cmcm (63)	Cmcm (63)				
	a = 16.3496(6) Å	a = 16.3094(4) Å	a = 16.2746(4) Å	a = 16.2466(4) Å				
	b = 9.2138(3) Å	b = 9.1770(2) Å	b = 9.1408(2) Å	b = 9.1132(2) Å				
Cell parameters	c = 9.0533(3) Å	c = 9.0242(3) Å	c = 8.9973(2) Å	c = 8.9796(2) Å				
	α, β, γ = 90°	α, β, γ = 90°	α, β, γ = 90°	α, β, γ = 90°				
Volume (ų)	1363.81(8)	1350.66(6)	1338.46(5)	1329.51(5)				
Z	16	16	16	16				
Density (g∙cml⁻³)	4.615	4.660	4.702	4.734				
μ (mm ⁻¹)	25.543	25.792	26.027	26.202				
F (000)	1628.0	1628.0	1628.0	1628.0				
Theta max (°)	30.644	30.660	30.660	30.660				
h, k, Imax	22, 13, 12	23, 13, 12	22, 12, 12	22, 13, 12				
GOF.	1.094	1.094	1.067	1.086				
	<i>R</i> ₁ =0.0267	R ₁ =0.0311	R ₁ =0.0304	R ₁ =0.0274				
Final R index	wR ₂ =0.0752	wR ₂ =0.0838	wR ₂ =0.0798	wR ₂ =0.0714				

Table S5. The refinement crystal parameters of β -Cs₃Cu₂Br₅:32.35%Ag⁺ under different temperatures.

Temperature (K)	τ ₁ (μs)	$rel_1\%$	τ ₂ (μs)	rel₂%	τ _{ave} (μs)
80	8.73	1.85	378	98.15	371.2
100	5.38	2.13	338.4	97.87	331.3
120	7.049	2.37	315.3	97.63	308.0
140	19.20	2.82	291.6	97.18	283.9
160	23.57	3.45	266.5	96.55	258.1
180	23.21	4.32	242.4	95.68	232.9
200	18.81	5.7	216.7	94.30	205.4
220	21.78	7.4	185.1	92.60	173.0
240	21.24	9.62	152.1	90.38	139.5
260	20	12.56	122.7	87.44	109.8
280	19.23	15.97	94.68	84.03	82.63
300	17.90	19.72	75.88	80.28	64.45
320	14.84	21.36	57.87	78.64	48.68
340	5.79	19.9	31.7	80.10	26.55
360	3.574	22.13	16.19	77.87	13.4
380	2.34	24.22	8.76	75.78	7.2
400	1.34	31.60	4.36	68.40	3.40

Table S6. The fitted results of the PL decay curves at different temperture for β -Cs₃Cu₂Br₅:12.40%Ag⁺.

Sample	Temperature (K)	τ ₁ (μs)	$rel_1\%$	τ ₂ (μs)	rel ₂ %	τ ₃ (μs)	rel₃%	τ_{ave} (µs)
6.52%	80	26.51	1.67	355.4	98.33			349.9
0.52%	360	6.17	15.35	33.68	84.65			29.45
17.32%	80	13.87	4.08	351.9	95.92			338.1
	360	1.96	28.24	6.44	71.76			5.18
20.56%	80	4.66	8.7	58.73	14.54	347.9	76.76	276
20.30%	360	0.64	35.06	2.21	64.94			1.66
32.35%	80	4.44	11.88	46.53	18.68	290.2	69.44	210.7
52.35%	360	0.55	42.08	1.64	57.92			1.18

Table S7. The fitted results of the PL decay curves of β -Cs₃Cu₂Br₅:x%Ag⁺.

 Table S8. Summary of the recent reports on traditional materials and metal halide-based

thermometry.

Materials	Probe range (K)	α _{max} (K ⁻¹ %)	Ref.
YVO ₄ :YbTm	300-1009	2.13	S12
$[C(NH_2)_3]_2SnBr_4$	173-303	6.0	S13
(C ₉ H ₁₅ N ₃)ZnCl ₄ : Mn ²⁺	110-290	0.57	S14
N,S-Carbon dots	275-353	1.79	S15
PbS QDs	150-350	1.3	S16
β -Cs ₃ Cu ₂ Br ₅ :6.52%Ag ⁺	119-351	1.6	This work
β -Cs ₃ Cu ₂ Br ₅ :32.35%Ag ⁺	102-246	2.8	This work

Table S9. Summary of LED device performance based on β -Cs₃Cu₂Br₅:x%Ag⁺

Sample	EQE	CRI
β -Cs ₃ Cu ₂ Br ₅ :6.52%Ag ⁺	0.35%	69.51
$\beta\text{-}Cs_3Cu_2Br_5\text{:}12.40\%Ag^+$	0.63%	70.35
$\beta\text{-}Cs_3Cu_2Br_5\text{:}17.32\%Ag^+$	0.33%	70.62
$\beta\text{-}Cs_3Cu_2Br_5\text{:}20.56\%Ag^+$	0.64%	71.63
β -Cs ₃ Cu ₂ Br ₅ :32.35%Ag ⁺	0.67%	74.2
0D Cs ₃ Cu ₂ Br ₅ + 32.35%Ag ⁺	0.11%	83.49

SUPPORTING REFERENCES

- 1. Q. Li, Z. Chen, B. Yang, L. Tan, B. Xu, J. Han, Y. Zhao, J. Tang and Z. Quan, Pressure-Induced Remarkable Enhancement of Self-Trapped Exciton Emission in One-Dimensional CsCu₂I₃ with Tetrahedral Units, *J. Am. Chem. Soc.*, 2020, **142**, 1786-1791.
- 2. K. Robinson, G. V. Gibbs and P. H. Ribbe, Quadriatic Elongation-Quantitative Measure of Distortion in Coordination Polyhedra, *Science*, 1971, **172**, 567-570.
- 3. J. F. G. Kresse, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 4. G. Kresse and J. Hafner, Ab Initiomolecular-Dynamics Simulation of the Liquid-Metal– Amorphous-Semiconductor Transition in Germanium, *Phys. Rev. B*, 1994, **49**, 14251-14269.
- 5. P. E. Blöchl, Projector Augmented-Wave Method, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 6. G. K. D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B* 1999, **59**, 1758-1775.
- 7. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 8. Y. Zhu, X. Y. Guo, L. N. Jiang, Z. R. Yan, Y. Yan and X. F. Han, Giant Tunneling Magnetoresistance in van der Waals Magnetic Tunnel Junctions Formed by Interlayer Antiferromagnetic Bilayer CoBr₂, *Phys. Rev. B*, 2021, **103**, 134437.
- 9. S. Froyen, Brillouin-Zone Integration by Fourier Quadrature: Special Points for Superlattice and Supercell Calculations, *Phys. Rev. B*, 1989, **39**, 3168-3172.

- A. Yadav, Vikram, N. Singh and A. Alam, Mixed-Functionalized Sc₂CT_x (t=O, OH, F) Mxenefor Electrocatalytic CO₂ Reduction: Insight from First-Principles Calculations, *Phys. Rev. Appl.*, 2022, **18**, 024020.
- S. Li, S. Li, J. Luo, J. Liu and J. Tang, Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications, The Journal of Physical Chemistry Letters, 2019, 10, 1999-2007. J. Luo, J. Liu and J. Tang, Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications, J. Phys. Chem. Lett., 2019, 10, 1999-2007.
- M. Runowski, P. Wozny, N. Stopikowska, I. R. Martin, V. Lavin and S. Lis, Luminescent Nanothermometer Operating at Very High Temperature-Sensing up to 1000 K with Upconverting Nanoparticles (Yb³⁺/Tm³⁺), ACS Appl. Mater. Interfaces, 2020, **12**, 43933-43941.
- S. Yakunin, B. M. Benin, Y. Shynkarenko, O. Nazarenko, M. I. Bodnarchuk, D. N. Dirin, C. Hofer, S. Cattaneo and M. V. Kovalenko, High-Resolution Remote Thermometry and Thermography Using Luminescent Low-Dimensional Tin-Halide Perovskites, *Nat. Mater.*, 2019, 18, 846-852.
- 14. X. Zhang, Y. Xiong, K. Liu, N. Wang, L. Fan, W. Li, X. Zhao, J. Zhao and Q. Liu, Thermal Stable Zinc-Based Hybrid Halides with High External Quantum Efficiency as Temperature Detectors, *J. Mater. Chem. C*, 2022, **10**, 13137-13142.
- 15. S. Kalytchuk, K. Polakova, Y. Wang, J. P. Froning, K. Cepe, A. L. Rogach and R. Zboril, Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing, *ACS Nano*, 2017, **11**, 1432-1442.
- 16. H. Zhao, A. Vomiero and F. Rosei, Ultrasensitive, Biocompatible, Self-Calibrating, Multiparametric Temperature Sensors, *Small*, 2015, **11**, 5741-5746.