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Experiment Section

General Procedures. All chemicals and solvents were commercially available and 

used as received. IR spectrum was recorded on a Bruker Tensor 27 spectrometer as dry 

KBr discs in the 400-4000 cm−1 region. All powder X-ray diffraction (PXRD) data were 

collected on a Bruker D8 Advance diffractometer using Cu Kα radiation and 2θ ranging 

from 5 to 40° at room temperature. The UV-vis diffused reflectance spectra (DRS) were 

obtained on an Agilent Cary 100 UV-vis spectrophotometer with BaSO4 as the 

reference for the baseline correction. Electron paramagnetic resonance (EPR) spectra 

were obtained on a Bruker EMXmicro EPR under visible-light irradiation. Scanning 

frequency: 9.83 GHz; central field: 3508.25 G; scanning power: 0.2 mW; scanning 

temperature: 25 °C. Room temperature photoluminescence (PL) and Time-resolved 

photoluminescence (TRPL) spectra of of the samples were collected on a FLS 1000 

fluorescence spectrophotometer. Gas chromatography (GC) was recorded on GC-2010 

Plus under the following conditions: oven temperature 280 °C, injector temperature 250 

°C, column temperature program 10 °C/min, from 150 to 280 °C holding for 15 min. 

The light irradiation was obtained by a 16 W blue LED. The electrochemical 

measurements were completed on a CHI760E electrochemical station in a standard 

three-electrode system with a graphite electrode (i.d. = 3 mm) as the working electrode 

system, a Pt electrode as the counter electrode, and an Ag/AgCl electrode as the 

reference electrode. Aqueous solution of Na2SO4 (0.5 M) was used as electrolyte.

X-ray Crystallography. The crystallographic data for compounds 1 and 2 was 

measured using a Bruker D8 Venture area-detector diffractometer with Ga-Kα radiation 

at 100 K. The structure was solved by direct methods and refined anisotropically with 

SHELXTL using full-matrix least-squares procedures based upon F2 values. For 

compound 1, the carboxyl group (C33, O3, O4 and C33A, O3A, O4A) is disordered 

over two positions with site occupancy factors of 0.77653 and 0.22347. As simplified, 

part (C33, O3, O4) was used to describe the structure in the manuscript. In the structure, 

free solvent molecules were removed using the SQUEEZE routine of PLATON, the 

subsequent refinements were based on the new data generated. Crystallographic data 



has been deposited with the Cambridge Crystallographic Data Centre (CCDC): 

2129046 (1) and 2171025 (2). Select bond lengths and angles are provided in Table S2.

Photocatalytic Activities’ Evaluation. In a typical reaction for the oxygenation of 

sulfides, 3.0 mg of photocatalyst, 0.25 mmol sulfide and 1 mL of mixed solvent 

(CH3OH/CHCl3, v/v = 1:1) were introduced into a 10 mL Pyrex vial with a magneto. 

The Pyrex vial was then stirred magnetically for 5 min with 500 r/min in dark at ambient 

conditions. Subsequently, the photocatalytic oxidation was irradiated under visible light 

using a 16 W blue light-emitting diodes (LED). After completion of the reaction, n-

decane as an internal standard was added into the tube, and next, the mixture was 

centrifuged to separate photocatalyst. Photo-induced catalytic reactions were monitored 

utilizing gas chromatography (GC) after filtration via a porous membrane with a 

diameter of 0.22 μm. The chemical structures of products were confirmed by 

comparison with standard chemicals. Similarly, for the photocatalytic oxidative 

hydroxylation of arylboronic acid, similar procedure was employed except that 3.0 mg 

of photocatalyst, 0.1 mmol arylboronic acid, 50 μL DIPEA (N,N-

diisopropylethylamine) and 2.0 mL of solvent (CH3CN) was introduced. The chemical 

structures of products were confirmed as compared to standard chemicals.

EPR Experimental. For the detection of O2
•‒, 0.1 mL of 5,5-dimethyl-1-pyrroline N-

oxide (DMPO)/DMF solution (30 μL/1.0 mL) was mixed with 1.0 mL of compound 

1/DMF (3.0 mg/1.0 mL), which was irradiated by a 16 W blue LED for 10 min at room 

temperature under air atmosphere, then sucking the filtrate with a 0.9 mm capillary tube 

transferred to EPR (electron paramagnetic resonance) tube for measurement. The 

detection of 1O2 was conducted, employing the similar process but utilizing 2,2,6,6-

tetramethylpiperidine (TEMP) as the trapping agent. 

Recyclability of Oxidation of Thioanisole over Compound 1. After the reaction 

indicated above, the reaction solution was centrifuged at 6000 rpm for 3 min after each 

cycle and washed with CH3OH 3 times. Then the catalyst was reused for the subsequent 



run with fresh thioanisole (0.25 mmol) under the optimized reaction conditions. 

Recyclability of oxidative hydroxylation of phenylboronic acid was similar to 

recyclability of oxidation of thioanisole.

Electrochemical Measurements. The catalyst (10 mg) was dispersed in 20 μL of 5 

wt% Nafion and 1 mL of H2O/CH3OH (v/v, 1:1) to obtain a suspension, and 20 μL of 

the suspension was scattered on the prepared graphite electrode then dried at room 

temperature in air. The Mott-Schottky plots were collected in 0.5 M Na2SO4 solution. 

The Mott-Schottky plots of compounds 1 and 2 were measured at frequencies of 500, 

1000, and 1500 Hz. While the photocurrent signal measurement was performed with 

fluoride-tin oxide (FTO) glassy electrode (area of 0.8 cm2) as the working electrode 

system under visible light from a 300 W xenon lamp with full spectrum.

Scavenger Experiments. A series of photocatalyst-free radical scavengers were used 

to control the photoactivity experiments, i.e., KI and AgNO3 were employed as the 

scavenger of photogenerated holes and electrons, isopropanol (IPA) as the scavenger 

of hydroxyl radicals (•OH), catalase as the scavenger of hydrogen peroxide (H2O2), 1,4-

benzoquinone (BQ) as the scavenger of superoxide radical species (O2
•−), and 1,4-

diazabicyclo[2.2.2]octane (DABCO) as the scavenger of singlet oxygen (1O2). 

Attempts were carried out similarly to the photocatalytic experiments where the radical 

scavengers (1 equiv or 5 μL of catalase) were added to the reaction system.

Scheme S1. The structure of (a) BODIPY and (b) H2TDC.



Table S1. Crystallographic data and structure refinement for compounds 1 and 2.

Compound 1 Compound 2

Formula C35H27BF2N4O4SZn C35H31BCdF2N4O6S

Formula weight 713.84 796.91

Crystal system monoclinic monoclinic

Space group P2/c P21/c

a /Å 20.994(10) 16.1316(13)

b /Å 6.118(3) 11.5642(10)

c /Å 31.752(12) 19.1555(16)

α /° 90 90

γ /° 126.12(2) 99.8630(10)

β /° 90 90

V /Å3 3294(3) 3520.6(5)

Z 4 4

ρcalcd/g cm-3 1.439 1.503

μ /mm−1 3.145 0.740

Collected reflections 14100 35162

Unique reflections 5701 11508

R1 [I>2σ (I)] 0.0452 0.0278

wR2 (all data) 0.1022 0.0751

CCDC 2129046 2171025

Table S2. Selected bond distances (Å) and angles (deg) for compound 1

Zn1−O2 1.985(2) Zn1−N4 2.041(3)

Zn1−N1#1 2.067(3) Zn1−O3 1.896(5)

O2−Zn1−N1#1 104.29(11) O2−Zn1−N4 115.10(11)

N4−Zn1−N1#1 112.25(11) O2−Zn1−O3 105.76(16)

O3−Zn1−N1#1 94.08(18) N4−Zn1−O3 122.21(17)

#1 +x, -2-y, -1/2+z; #2 -x, +7, -3/2 -z; #3 +x, -2-y, 1/2+z



Table S3. Selected bond distances (Å) and angles (deg) for compound 2

Cd1−O1 2.2480(13) Cd1−O2#1 2.2948(13)

Cd1−O3#2 2.3379(13) Cd1−O4#2 2.4806(14)

Cd1−N1 2.3032(13) Cd1−N4#3 2.3391(13)

O1−Cd1−O2#1 102.15(5) O1−Cd1−O3#2 90.61(5)

O1−Cd1−O4#2 143.48(5) O1−Cd1−N1 107.34(5)

O1-Cd1-N4#3 85.78(5) O2#1−Cd1−O3#2 163.21(5)

O2#1−Cd1−O4#2 110.57(5) O2#1−Cd1−N1 90.30(5)

O2#1−Cd1−N4#3 82.79(5) O3#2−Cd1−O4#2 54.41(5)

O3#2−Cd1−N4#3 87.38(5) N1−Cd1−O3#2 96.32(5)

N1−Cd1−O4#2 88.65(5) N1−Cd1−N4#3 166.26(5)

#1 2-x, 1-y, 1-z; #2 +x, 3/2-y, -1/2+z; #3 1+x, 1+y, +z; #4 +x, 3/2-y, 1/2+z; #5 -1+x, -1+y, +z;

Figure S1 Presentation of the 3D architecture of compound 2 from (a) a axis and (c) c 

axis. 



Figure S2. The PXRD patterns of (a) 1 and (b) 2 simulated spectrum was calculated 

from the single crystal data, respectively.

Figure S3. PXRD patterns of 1 in organic solvents (a) and in aqueous solution with pH 

range of 3-13 (b) for 48 h.

Figure S4. PXRD patterns of 2 in organic solvents (a) and in aqueous solution with pH 

range of 3-13 (b) for 48 h.



Figure S5. Thermogravimetric analysis (TGA) of (a) 1 and (b) 2.

Figure S6. Steady-state photoluminescence spectra (PL) (excitation wavelength of 440 

nm) of BODIPY, compounds 1 and 2. 



Figure S7. Time-resolved photoluminescence (TRPL) spectra of compounds 1-2 and 

BODIPY monomer.

Table S4 The calculated lifetimes of BODIPY and compound 1-2.

τ1 (ns) A1 τ2 (ns) A2 τ (ns)

BODIPY 6.62 -158198.39 6.83 162898.59 10.16

compound 1 4.64

compound 2 4.93

Note that, the TRPL spectra of compounds 1-2 followed a single exponential model, 

and BODIPY fitted a secondary exponential model. The lifetime of BODIPY was 

calculated according to the equation: 

                  (Equation R1)

𝜏=
𝐴1𝜏

2
1 + 𝐴2𝜏

2
2

𝐴1𝜏1 + 𝐴2𝜏2



Table S5. Solvent influence on the photocatalytic oxidation of thioanisole over 

compound 1.a

Entry Solvent Con. [% ]b Sel. [%]b

1 DMF 10 99

2 CH3CN 96 93

3 CH3CH2OH 67 97

4 CH3OH 85 88

5 CHCl3 1 99

6 CH3OH:CHCl3 99 99

a Catalyst (3.0 mg), substrate (0.25 mmol), solvent (1.0 mL), 16 W blue LED, 1.5 h, air, 25 ℃. 

bDetermined by GC using n-decane as the internal standard.



Table S6. Performances of the oxidation of thioanisole using various photocatalysts.

Catalyst Light source Oxidant
Time 
[h]

Conv. 
[%]

Sel. 
[%]

TOF 
[h−1]a

TOF
[mmol g−1 h−1]b Ref.

[Zn2(H2O)4SnIV(TPy
P)(HCOO)2]∙4NO3∙D

MF∙4H2O
350 W Xe lamp O2 12 >99.9 >99.9 0.8 — 1

UNLPF‐10
Blue LED

(135 mW, λmax = 465 nm)
O2 8 99 99 104.0 — 2

[Zn(ADBEB)(DMA)] 300 W Xe lamp O2 3.5 >99 >99 5.0 8.0 3

NNU-45
300 W Xe lamp

(λ > 420 nm)
Air, H2O2 4 99 95 16.7 23.5 4

Zr6-Irphen
Blue light LED

(100 W, λ = 460 nm)
O2 6 100 100 4.2 — 5

Zr-DTPP
25 W blue LED

(5.0 mW/cm2, 420 nm < 
λem < 490 nm)

O2 7 97 — 692.9 — 6

Zr12-NBC 24 W blue LED light Air 10 100 100 5.0 — 7

RuII complex-based 
UIO-67

26 W fluorescent lamp Air 22 72 — 16.6 — 8

P25 TiO2
300 W Xe lamp

(λ > 400 nm)
O2 10 84 92 0.8 1.1 9

ARS-TiO2
300 W Xe lamp

(λ > 450 nm)
O2 10 81 91 12.2 11.5 10

3%-C60@PCN‐222
LED lamp

(50 mW/cm2, λ > 400 nm)
Air 3 > 99 100 80.0 3.3 11

3D-PdPor-COF 3 W blue LEDs Air 0.4 98 — 49.0 — 12

h-LZU1
300 W Xe lamp

(λ > 380 nm)
Air (30 ℃) 22 100 92.6 — 1.3 13

DhaTph-Zn
300 W Xe lamp

(λ > 400 nm)
1atm O2 10 82 >99 — 0.41 14

C3N4 NSs-5 h
Xe lamp

(λ > 400 nm)
0.1 MPa O2 1 99 99 — 50.0 15

TTO-COF
blue LEDs
(3 W × 4)

0.1 MPa O2 2 90 98 — 26.5 16

Compound 1 16 W blue LED lamps Air 1.5 99 99 39.7 55.6
This 
work

aTOF = mmol product/(mmol catalyst×reaction time).

bTOF = mmol product/(g catalyst×reaction time).



Figure S8. Leaching test for the oxidative of thioanisole over 1 under optimized 

reaction conditions. After 20 min of the reaction, the catalyst was filtered out whereas 

the filtrate was further reacted under identical conditions: (a) the common catalytic 

process and (b) hot filtration test.

Figure S9. Solvent influence on the oxidative hydroxylation of phenylboronic acid over 

1.



Table S7. Performances of the photocatalytic hydroxylation of boronic acid using 

various photocatalysts.

Catalyst Light source Oxidant
Time 

[h]
Yield.[%]

TOF

[h−1]a

TOF

[mmol g−1 h−1]b Ref.

JNU-204 30 W Blue LED Air 48.0 93 1.9 10.4 17

MOF-525 Green LED O2 9.0 100 - 6.7 18

UiO-67-

Ru(bpy)3

23 W compact 

fluorescent bulb
Air 24.0 81 0.7 - 19

DhaTph-Ni
300 W Xe Lamp 

(λ > 400 nm)
O2 1.5 99 - 6.6 14

COF-1 LED (440 nm) Air 30.0 91 0.6 - 20

LZU-190 20 W white LED Air 24.0 99 0.7 - 21

Cz-POF-1 14 W CFL Air 24.0 94 2.0 - 22

BBO-COF 16 W white LED Air 48.0 99 0.1 0.2 23

[Ru(bpy)3Cl2]

·6H2O

36 W 

fluorescence lamp
Air 48.0 99 1.6 - 24

Compound 1 16 W blue LED Air 1.5 99 15.9 22.2
This 

Work

aTOF = mmol product/(mmol catalyst×reaction time).

bTOF = mmol product/(g catalyst×reaction time).
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