Supporting Information

Chiral defect induced blue photoluminescence and circular

polarization luminescence of zero-dimensional Cs₄PbBr₆

perovskite nanocrystals

Jiaqi Zhao¹, Yuan Wang¹, Tinglei Wang¹ and Yu Wang^{1*}

¹ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012

*Corresponding Authors: wangyu@jlu.edu.cn.

Table of Contents

1.	Sche	ematic illustrations of the crystal structures3
2.	TEN	I and HRTEM images of CsPbBr ₃ NCs3
3.	XRD	patterns of CsPbBr ₃ NCs4
4.	UV-	vis spectra and PL spectra of CsPbBr $_3$ NCs4
5.	Part	icle size distribution of <i>R</i> -, <i>S</i> -Cs ₄ PbBr ₆ NCs5
6.	HRT	EM image and selected-area FFT patterns5
7.	TEN	l and HRTEM images of N-Cs ₄ PbBr ₆ NCs6
8.	Pho	tographs of CsPbBr ₃ NCs7
9.	UV-	vis and PL spectra of N-Cs $_4$ PbBr $_6$ NCs8
10.		Photographs of N-Cs ₄ PbBr ₆ NCs8
11.		PL decay lifetime of <i>R</i> -, S-Cs ₄ PbBr ₆ NCs9
12.		Optical band gap10
13.		CD spectra11
13.1		CD spectra of <i>R</i> -, <i>S</i> -MBA11
13.2		CD spectra of CsPbBr ₃ and N-Cs ₄ PbBr ₆ NCs11
13.3		CD and g_{abs} spectra of CsPbBr ₃ NCs with different content of chiral precursors solution 12
13.4		DC (V) plots of <i>R</i> -, <i>S</i> -Cs ₄ PbBr ₆ NCs12
14.		TEM images of $CsPbBr_3 NCs$ with different content of chiral precursors solution13
15.		PL and UV–vis spectra of CsPbBr $_3$ NCs with different content of chiral precursors solution.
		14
16.		XRD patterns of CsPbBr $_3$ NCs with different content of chiral precursors solution15
17.		FTIR Characterization16
19.		NMR spectra18
20.		TRPL Data19
21.		The absorption dissymmetry factor (g _{abs})20

1. Schematic illustrations of the crystal structures

Fig. S1. Schematic illustrations of the crystal structures of (a) three-dimensional (3-D) cubic phase CsPbBr₃ and (b) zero-dimensional (0-D) rhombohedral phase Cs₄PbBr₆.

2. TEM and HRTEM images of CsPbBr₃ NCs

Fig. S2. TEM images of (a, b) CsPbBr₃ NCs with different magnifications. HRTEM images of CsPbBr₃ NCs.

3. XRD patterns of CsPbBr₃ NCs

Fig. S3. XRD patterns of CsPbBr₃ NCs.

4. UV-vis spectra and PL spectra of CsPbBr₃ NCs

Fig. S4. (a) UV-vis spectra and (b) PL spectra of CsPbBr₃ NCs.

5. Particle size distribution of *R*-, *S*-Cs₄PbBr₆ NCs

Fig. S5. Particle size distribution of *R*-, *S*-Cs₄PbBr₆NCs.

6. HRTEM image and selected-area FFT patterns

Fig. S6. HRTEM image of a) R-Cs₄PbBr₆ NCs and b) the corresponding selected-area FFT patterns.

7. TEM and HRTEM images of $N-Cs_4PbBr_6 NCs$

Fig. S7. TEM images of (a, b) $N-Cs_4PbBr_6$ NCs with different magnifications. HRTEM image of $N-Cs_4PbBr_6$ NCs.

8. Photographs of CsPbBr₃ NCs

Fig. S8. Photographs of $CsPbBr_3 NCs$ under visible illumination (left) and UV 365 nm illumination (right).

9. UV-vis and PL spectra of N-Cs₄PbBr₆ NCs

Fig. S9. (a) PL spectrum and (b) UV-vis spectrum of N-Cs₄PbBr₆ NCs.

10.Photographs of N-Cs₄PbBr₆ NCs

Fig. S10. Photographs of N-Cs₄PbBr₆ NCs under visible illumination (left) and UV 365 nm illumination (right).

11.PL decay lifetime of *R*-, *S*-Cs₄PbBr₆ NCs.

Fig. S11. PL decay lifetime of *R*-, *S*-Cs₄PbBr₆NCs.

12.Optical band gap

Fig. S12. Optical band gap of (a) N-Cs₄PbBr₆ NCs and (b) R-, S-Cs₄PbBr₆ NCs.

13.1. CD spectra of *R*-, *S*-MBA

Fig. S13. CD spectra of *R*-, *S*-MBA in toluene solution.

13.2. CD spectra of $CsPbBr_3$ and $N-Cs_4PbBr_6NCs$

Fig. S14. CD spectra of (a) CsPbBr₃ and (b) N-Cs₄PbBr₆ NCs.

13.3. CD and g_{abs} spectra of CsPbBr₃ NCs with different content of

chiral precursors solution

Fig. S15. CD spectra of CsPbBr₃ NCs with different content of chiral precursors solution and corresponding g_{abs} values.

13.4. DC (V) plots of R-, S-Cs₄PbBr₆ NCs

Fig. S16. DC (V) plots of R-, S-Cs₄PbBr₆NCs.

14. TEM images of CsPbBr₃ NCs with different content of chiral precursors solution.

Fig. S17. TEM images of CsPbBr₃ NCs with different content of chiral precursors solution. The green area circled is cubic CsPbBr₃ NCs without phase transformation.

15.PL and UV-vis spectra of CsPbBr₃ NCs with different content of chiral precursors solution.

Fig. S18. The (a) PL spectra and (b) UV-vis spectra of CsPbBr3 NCs with differentcontentofchiralprecursorssolution.

16.XRD patterns of CsPbBr₃ NCs with different content of chiral precursors solution.

Fig. S19. XRD patterns of CsPbBr₃ NCs with different content of chiral precursors solution.

17.FTIR Characterization

Fig. S20. The FTIR spectra of N-Cs₄PbBr₆, *R*-, *S*-Cs₄PbBr₆ NCs at different wavenumber regions.

Fig. S21. XPS spectra of (a-c) N 1s, C 1s and Br of CsPbBr₃ NCs, (d-f) N 1s, C 1s and Br of S-Cs₄PbBr₆ NCs, (g-i) N 1s, C 1s and Br of R-Cs₄PbBr₆ NCs.

19.NMR spectra

Fig. S22. ¹H NMR spectra of (a) N-Cs₄PbBr₆ NCs, *S*-Cs₄PbBr₆ NCs and *S*-MBABr in chloroform-d (CDCl₃). The blue asterisks refer to the solvent signal, the orange region is the chemical shift of ¹H on the benzene ring. (b)The regional magnification of ¹H NMR spectrum of N-Cs₄PbBr₆ NCs and *S*-Cs₄PbBr₆ NCs. (c) ¹H NMR spectrum of N-Cs₄PbBr₆ NCs, *S*-Cs₄PbBr₆ NCs, OAm and OAc at chemical shifts of 5.5-0.5 ppm.

20.TRPL Data

Table S1. TRPL results for *R*-, *S*-Cs₄PbBr₆NCs.

Sample	τ_1 (ns)	A ₁	τ ₂ (ns)	A ₂	τ ₃ (ns)	A ₃	τ _{ave} (ns)
S-Cs ₄ PbBr ₆	0.9223	6.03 %	9.302	19.21 %	52.36	72.76 %	50.36
<i>R</i> -Cs ₄ PbBr ₆	0.8654	7.91%	8.027	22.90%	44.24	69.20%	42.10

The films were fitted with a triexponential function of the form:

$$A(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3)$$
(3)
$$\tau_{ave} = (A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2)/(A_1\tau_1 + A_2\tau_2 + A_3\tau_3)$$
(4)

Where, τ_1 , τ_2 and τ_3 present the decay time, A_1 , A_2 and A_3 present the relative contributions, respectively.

21. The absorption dissymmetry factor (g_{abs})

Table S2. The g_{abs} -factor values (×10⁻³) of chiral *R*-, *S*-Cs₄PbBr₆ NCs treated with different content of chiral solution.

Sample	250	400	500	600	700
S-Cs ₄ PbBr ₆	-1.2	-4.5	-5	-8.8	-2
<i>R</i> -Cs ₄ PbBr ₆	3	4.5	7.4	8.5	3.3