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Experimental Section

1. Sample preparation

Preparation of TUTJ-201Co single crystals: Co(NO3)2·3H2O (90.0 mg, 0.37 mmol) and H2L (30.0 

mg, 0.12 mmol) were added to a 20 mL glass vial, and then, 9.0 mL of DMA, 0.9 mL of H2O, and 1.3 

mL of HBF4 (48 wt %) were added to the glass vial by using a pipette. The vial was sealed and placed in 

an oven. The oven temperature was increased from room temperature to 353 K within 1 h and kept at this 

temperature for 24 h. Then, the reaction kettle was taken out of the oven and naturally cooled to the room 

temperature. The products were collected by suction filtration and washed several times with fresh DMA 

and acetone.

2. Single-crystal X-ray diffraction studies

Crystallographic data of TUTJ-201Co was collected on XtaLAB Synergy which was equipped with 

single source at home/near Cu X-ray sources (λ = 1.5405 Å) at 100 K. The structures were solved with 

dual-direct methods using SHELXTL and refined with the full-matrix least-squares technique based on 

F2 using the SHELXL-2014 program package and Olex-2 software. Non-hydrogen atoms were refined 

anisotropically, and all hydrogen atoms bound to C were generated geometrically. The crystal data of 

these compounds are listed in Table S1. The X-ray crystallographic coordinates for structures reported in 

this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition 

numbers CCDC 2345232. These data can be obtained free of charge from the Cambridge Crystallographic 

Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

3. Fitting of pure component isotherms

The single-component N2 and CH4 adsorption isotherms of TUTJ-201Ni were fitted using the dual-

http://www.ccdc.cam.ac.uk/data_request/cif
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site Langmuir-Freundlich (DSLF) model, and R2 was greater than 0.9999.

                                   (1)
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Where 𝑞 is the equilibrium adsorbed amount of an adsorbent (mmol/g); 𝑞1 and 𝑞2 are the saturation 

uptakes of site 1 and site 2 (mmol/g); b1 and b2 are the affinity coefficients of site 1 and site 2 (1/bar); 𝑛1 

and 𝑛2 are the corresponding deviations from an ideal homogeneous surface.

4. Qst calculation

The Qst of TUTJ-201Ni with N2 and CH4 were calculated using the N2, CH4 single-component 

adsorption isotherms at 273 K and 298 K via the Clausius-Clapeyron equation.
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In the above equation, P represents the pressure, the unit is bar, T is the temperature in K, and R is the 

gas constant (8.314).

5. IAST calculations of adsorption selectivity

The two-component gas selectivity calculation formula is defined as:

                                                  (3)     

1 2
ads

1 2

q / qS =
p / p

Where, q1 and q2 are the absolute adsorption amounts of the components, and p1 and p2 are the partial 

pressures of the components in the gas mixture. 

6. Computational method
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6.1 Grand Canonical Monte Carlo (GCMC) simulations

The probability distributions of CH4 and N2 were simulated at 298 K 1bar by using the Grand 

Canonical Monte Carlo (GCMC) approach as implemented in the RASPA simulation code.[1] The 

simulations assumed the MOF to be rigid. The Lennard-Jones parameters was determined by using the 

Universal Force Field (UFF) for the MOF.[2] N2 molecule was described using a three-site charged model 

with two Lennard-Jones sites on the Nitrogen atoms and a central site (center of mass) for purely 

electrostatic interactions (TraPPE model).[3] CH4 molecule was treated as unit-atom model (also TraPPE 

model).[3] Atomic charges for all atoms in the studied MOF were obtained by using the DDEC06 

method.[4]

6.2 DFT calculations 

Our density functional theory (DFT) calculations[5,6] were carried out in the Vienna ab initio 

simulation package (VASP) based on the plane-wave basis sets with the projector augmented-wave 

method.[7,8] The exchange-correlation potential was treated by using a generalized gradient approximation 

(GGA) with the Perdew-Burke-Ernzerhof (PBE) parametrization.[9] The van der Waals correction of 

Grimme’s DFT-D3 model was also adopted.[10] The energy cutoff was set to be 520 eV. The Brillouin-

zone integration was sampled with a Γ-centered Monkhorst-Pack mesh of 2 × 1 × 2.[11] The structures 

were fully relaxed until the maximum force on each atom was less than 0.01 eV/Å, and the energy 

convergent standard was 10-5 eV. The structure was fully relaxed and reached the minimum energy 

principle during the structure optimization process.
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Supporting Table and Figures

Figure S1. Photograph of the crystals of TUTJ-201Co.

Figure S2. The simulated XRD pattern from the single-crystal X-ray structure of TUTJ-201Co (black), and the PXRD 

patterns of as-synthesized powder (red) of TUTJ-201Co.
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Table S1. Crystallographic parameters of TUTJ-201Co.

Crystal data TUTJ-201Co

CCDC number 22345232

Empirical formula C24H12Co2N4O9

Formula weight 618.24

Temperature/K 100.00(10)

Crystal system orthorhombic

Space group Pbcn

a / Å 10.3752(4)

b / Å 19.2876(8)

c / Å 14.3402(6)

α/° 90

β/° 90

γ/° 90

Volume/ Å3 2869.7(2)

Z 4

Density/g/cm3 1.431

μ/mm -1 1.209

F(000) 1240.0

Reflections collected 17211

Independent reflections 3758 [Rint = 0.0488, Rsigma = 0.0465]

Goodness-of-fit on F2 1.033

R1a[I>2σ(I)] R1 = 0.0399, wR2 = 0.1134

ωR2b[I>2σ(I)] R1 = 0.0535, wR2 = 0.1197

Largest diff. peak/hole / e Å-3 0.74/-0.49
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Table S2. Crystallographic parameters of TUTJ-201Ni.

Crystal data TUTJ-201Ni

CCDC number 2345233

Empirical formula C24H12Ni2N4O9

Formula weight 617.78

Crystal system Orthorhombic

Space group P b c n

a / Å 10.2897(1)

b / Å 18.6265(5)

c / Å 14.3605(4)

α/° 90

β/° 90

γ/° 90

Rwp 0.0612

Rp 0.0468

GOF 2.01

X2 4.03
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Figure S3. SEM images of as made TUTJ-201Co (a, b).
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Figure S4. TG curve of TUTJ-201Co. 

Figure S5. FTIR spectra of TUTJ-201Co and TUTJ-201Ni. 
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Figure S6. Photographs of TUTJ-201Ni after activation at specific temperatures for 5 h.

Figure S7. Variable-temperature PXRD patterns for TUTJ-201Ni. Obviously, the crystal structure of TUTJ-201Ni 

remains stable under the degassing conditions of 300 ºC, indicating its highly thermal stability.
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Figure S8. N2, CH4 single-component adsorption isotherms at 273, 298 and 313 K, which used for the calculation of 

isosteric heats by using the Clausius-Clapeyron equation.

Figure S9. Kinetic adsorption curves for CH4 and N2 at 1.0 bar and 298 K. The slope of kinetic adsorption curve of CH4 

is notably higher than that of N2, indicating a faster CH4 adsorption rate.
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Figure S10. N2 and CH4 adsorption isotherms at 273, 298 and 313 K in TUTJ-201Ni with dual-site Langmuir-Freundlich 

model fits.
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Table S3. Test conditions and DSLF fit parameters for CH4 and N2 in TUTJ-201Ni of Figure S10.

Numbering T. T.[a] q1 b1 n1 q2 b2 n2

273 3.39E1 2.73 0.98 1.16E1 1.02 0.52

273 1.09E1 1.13 0.53 4.22 2.90 0.99

(a)

(b)

(c) 298 4.31E1 0.79 1.00 0.55 1.03E1 0.26

(d) 298 1.81E1 0.30 1.02 0.89 8.98 0.27

(e) 313 1.61E1 1.19 0.60 7.55 2.67 1.03

(f) 313 2.38 3.40 0.31 3.38 1.41 1.02

[a]: “T. T.” stands for test temperature, the unit is “K”.
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Figure S11. Schematic illustration of home-built rig for gas breakthrough experiment.
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Table S4 Atomic content in TUTJ-201Ni

Atomic %
Names

Ni2p C1s O1s N1s
O/Ni Atomic ratio

TUTJ-201Ni 5.06 60.1 24.54 10.3 4.85

Note: Atomic content was evaluated by a multifunctional X-ray photoelectron spectrometer (Thermo ESCALAB 

250XI).

Table S5. Comparison of adsorptive separation properties of TUTJ-201Ni with the selected various porous materials 
reported in the literature.

Sample
50/50 CH4/N2 

selectivity

CH4 uptake 

(cm3/g) 298 K

N2 uptake 

(cm3/g) 298 K

CH4 Qst

(kJ/mol)
Ref.

Ni(ina)2 15.8 46.7 14.5 28.0 12

Al-CDC 13.1 32.0 5.1 27.5 13

Co3(C4O4)2(OH)2 12.5 8.9 4.1 25.1 14

CAU-21-BPDC 11.9 22.2 4.2 20.5 15

SBMOF-1 11.5 20.6 4.0 23.5 16

ATC-Cu 9.7 64.9 16.8 26.8 17

STAM-1 10.8 14.2 2.4 20.0 13

NKMOF-8-Me 9.0 39.5 7.0 28.0 18

MIL-160 8.9 10.5 3.0 10.7 19

ClCTF-1-650 8.6 32.9 7.8 22.0 20

Al-FUM-Me 8.6 27.2 5.0 24.1 21

MOF-888 8.4 10.0 1.8 26.0 22

Cu(INA)2 8.3 18.6 2.7 17.5 23

MOF-891 7.8 30.0 6.4 22.0 22

ZIF-94 7.4 33.6 8.2 23.9 24

Ni-Qc-5-Dia 7.4 29.3 6.2 19.5 25

Ni-MA-BPY 7.4 22.6 4.7 23.5 26
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Ni(BTC)(PIZ) 7.3 36.3 7.8 18.1 27

Co-MA-BPY 7.2 20.6 4.4 22.8 26

DMOF-A2 7.2 37.0 8.8 22.5 28

CAU-10 7.2 16.6 5.3 7.1 19

Ni(OAc)2L 7.0 25.7 10.5 26.7 29

MOF-890 7.0 24.0 6.0 23.0 22

Cu(hfipbb)(H2hfipbb)0.5 6.9 10.5 2.9 24.0 30

MOF-889 6.4 26.0 5.3 22.0 22

TUT-100 6.3 27.5 5.0 23.7 31

[Ni3(HCOO)6] 6.2 18.4 4.0 32

[Co3(HCOO)6] 5.1 11.0 2.7 23.0 33

UiO-66-Br2 5.1 16.1 4.4 34

PAF-26-COOH 4.2 12.1 3.0 14.0 35

MOF-177 4.0 12.5 3.0 11.7 36

MIL-53(Al) 3.7 16.6 5.0 19.0 37

Al-BDC 3.6 16.4 5.0 18.7 23

ZIF-93 3.6 11.7 3.6 15.8 24

NU-1000 2.5 10.8 4.4 38

ZIF-8 2.5 7.8 2.0 17.0 24

MIL-120Al 6.0 33.7 10.5 20.9 39

TUTJ-201Ni 7.2 19.8 5.0 24.5 This work
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