Supporting information for

Synergistic Combination of Different Types Functional Motifs in Rb(NO₃)(SO₃NH₃) for Realizing Excellent Ultraviolet Optical

Nonlinearity

Yunxia Song^a, Chensheng Lin^b, Xin Zhao^b, Tao Yan^b, Ning Ye^c, Haotian Tian^{b*}, Min Luo^{b*}

^a School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, Fujian, 350108, China.

^b Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

° Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China

Email: lm8901@fjirsm.ac.cn

Table of Contents					
Sections	ions Titles				
Table S1.	Crystal Data and Structure Refinement of Rb(NO ₃)(SO ₃ NH ₃).	S3			
Table S2.	Atomic coordinates ($\times 10^4$), equivalent isotropic displacement parameters (Å ² ×10 ³) for Rb(NO ₃)(SO ₃ NH ₃).	S3			
Table S3.	Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for $Bb(NO_2)(SO_2NH_2)$	S3-4			
Table S4.	Bond lengths (Å) and bond angles (°) for $Rb(NO_3)(SO_3NH_3)$.	S4-5			
Figure S1.	Calculated and experimental powder X-ray diffraction patterns of Rb(NO ₃)(SO ₃ NH ₃).	S5			
Figure S2.	Energy dispersive X-ray spectroscopy analysis of Rb(NO ₃)(SO ₃ NH ₃).	S6			
Figure S3.	TG-DTA curves of Rb(NO ₃)(SO ₃ NH ₃)	S6			
Figure S4.	Partial density of states (PDOS) curves for $RbNO_3$ and $Pb(NO_3)$ (SO_NH)	S7			
Figure S5.	The SHG density of KNO ₃ SO ₃ NH ₃ and Rb(NO ₃)(SO ₃ NH ₃)	S7			

Formula	H ₃ N ₂ O ₆ RbS
Formula weight(g/mol)	244.57
Crystal system	Orthorhombic
Space group	<i>Pmc</i> 2(1)
a/Å	5.6303(3)
b/Å	7.4552(5)
c/Å	8.0537(5)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	338.05(4)
Z	2
ρ (calcd) g/cm ³	2.403
μ/mm^{-1}	7.613
F (000)	236
Index ranges	$-7 \le h \le 7,$
	$-9 \le k \le 9,$
	$-10 \le 1 \le 10$
Reflections collected	3669
R _{int}	0.0230
GOF on F ²	1.139
R/wR (I>2 $\sigma(I)$)	$R_1 = 0.0200, wR_2 = 0.0428$
R/wR (all data)	$R_1 = 0.0219, wR_2 = 0.0454$
Flack parameter	0.017(15)
$\overline{{}^{a}\mathbf{R}(\mathbf{F}) = \Sigma \mathbf{F}_{o} - \mathbf{F}_{c} / \Sigma \mathbf{F}_{o} } \cdot \mathbf{w}\mathbf{R} (\mathbf{F}\mathbf{o}^{2}) = [\Sigma \mathbf{w}(\mathbf{F}_{o}^{2} - \mathbf{I})]$	$(F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1}$

Table S1. Crystal Data and Structure Refinement of Rb(NO₃)(SO₃NH₃).

Table S2. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³) for $Rb(NO_3)(SO_3NH_3)$.

	• /				
Atom	Х	У	Z	U(eq)	BVS
Rb	0	3786(1)	5977(1)	35(1)	1.00
S	5000	7137(2)	3770(2)	29(1)	6.19
O(1)	2846(7)	6308(5)	4243(6)	68(1)	-1.77
O(2)	5000	7775(7)	2109(6)	50(1)	-1.73
O(3)	8087(5)	8202(5)	7915(5)	54(1)	-1.66
O(4)	10000	9791(7)	6146(8)	56(1)	-1.73
N(1)	5000	9126(7)	4965(7)	33(1)	-2.93
N(2)	10000	8739(6)	7322(7)	36(1)	5.04

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for Rb(NO₃)(SO₃NH₃). The Anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...$].

displacement	i luciol expolit	the takes the for	$1111. 2\pi$ [11 a		12].		
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	_
Rb	39(1)	35(1)	31(1)	6(1)	0	0	_
S	29(1)	26(1)	32(1)	0(1)	0	0	
O(1)	68(2)	61(3)	75(3)	-16(2)	29(2)	-38(2)	
O(2)	78(3)	43(3)	29(3)	0(2)	0	0	

O(3)	41(2)	71(3)	51(2)	12(2)	-4(2)	-12(2)	
O(4)	76(2)	42(3)	51(3)	20(3)	0	0	
N(1)	36(2)	29(3)	32(3)	-3(2)	0	0	
N(2)	44(3)	31(3)	32(3)	-3(2)	0	0	

Table S4. Bo	ond lengths (Å) and bo	ond angles (°) for Rb(NO ₃)	(SO ₃ NH ₃).
Rb-O(1)#1	2.837(3)	Rb-N(2)#4	3.495(6)
Rb-O(1)	2.837(3)	Rb-S#7	3.6687(10)
Rb-O(4)#2	2.982(5)	Rb-S#6	3.6687(10)
Rb-O(3)#3	3.072(4)	S-O(1)	1.414(3)
Rb-O(3)#4	3.072(4)	S-O(1)#8	1.414(3)
Rb-O(1)#5	3.081(5)	S-O(2)	1.420(5)
Rb-O(1)#6	3.081(5)	S-N(1)	1.768(5)
Rb-O(2)#6	3.180(2)	O(3)-N(2)	1.244(4)
Rb-O(2)#7	3.180(2)	O(4)-N(2)	1.230(8)
O(1)#1-Rb-O(1)	68.77(19)	O(3)#3-Rb-S#7	132.12(7)
O(1)#1-Rb-O(4)#2	133.17(12)	O(3)#4-Rb-S#7	97.63(7)
O(1)-Rb-O(4)#2	133.17(12)	O(1)#5-Rb-S#7	22.04(7)
O(1)#1-Rb-O(3)#3	74.13(11)	O(1)#6-Rb-S#7	82.60(8)
O(1)-Rb-O(3)#3	97.03(11)	O(2)#6-Rb-S#7	115.78(8)
O(4)#2-Rb-O(3)#3	63.55(14)	O(2)#7-Rb-S#7	22.51(8)
O(1)#1-Rb-O(3)#4	97.04(11)	N(2)#4-Rb-S#7	114.55(5)
O(1)-Rb-O(3)#4	74.13(11)	O(1)#1-Rb-S#6	89.58(10)
O(4)#2-Rb-O(3)#4	63.55(14)	O(1)-Rb-S#6	149.25(9)
O(3)#3-Rb-O(3)#4	41.04(12)	O(4)#2-Rb-S#6	77.57(8)
O(1)#1-Rb-O(1)#5	136.80(9)	O(3)#3-Rb-S#6	97.63(7)
O(1)-Rb-O(1)#5	98.14(13)	O(3)#4-Rb-S#6	132.12(7)
O(4)#2-Rb-O(1)#5	86.47(14)	O(1)#5-Rb-S#6	82.60(8)
O(3)#3-Rb-O(1)#5	148.95(10)	O(1)#6-Rb-S#6	22.04(7)
O(3)#4-Rb-O(1)#5	119.48(9)	O(2)#6-Rb-S#6	22.51(8)
O(1)#1-Rb-O(1)#6	98.14(13)	O(2)#7-Rb-S#6	115.78(8)
O(1)-Rb-O(1)#6	136.81(9)	N(2)#4-Rb-S#6	114.55(5)
O(4)#2-Rb-O(1)#6	86.47(14)	S#7-Rb-S#6	100.23(4)
O(3)#3-Rb-O(1)#6	119.48(9)	O(1)-S-O(1)#8	118.2(4)
O(3)#4-Rb-O(1)#6	148.95(10)	O(1)-S-O(2)	113.6(2)
O(1)#5-Rb-O(1)#6	62.68(15)	O(1)#8-S-O(2)	113.6(2)
O(1)#1-Rb-O(2)#6	83.32(12)	O(1)-S-N(1)	102.7(2)
O(1)-Rb-O(2)#6	152.08(13)	O(1)#8-S-N(1)	102.7(2)
O(4)#2-Rb-O(2)#6	67.74(10)	O(2)-S-N(1)	103.4(3)
O(3)#3-Rb-O(2)#6	75.11(11)	O(1)-S-Rb#9	54.9(2)
O(3)#4-Rb-O(2)#6	111.33(11)	O(1)#8-S-Rb#9	137.87(19)
O(1)#5-Rb-O(2)#6	101.97(11)	O(2)-S-Rb#9	59.02(10)
O(1)#6-Rb-O(2)#6	44.48(10)	N(1)-S-Rb#9	119.41(9)
O(1)#1-Rb-O(2)#7	152.08(13)	O(1)-S-Rb#4	137.86(19)
O(1)-Rb-O(2)#7	83.32(12)	O(1)#8-S-Rb#4	54.9(2)
O(4)#2-Rb-O(2)#7	67.74(10)	O(2)-S-Rb#4	59.02(10)
O(3)#3-Rb-O(2)#7	111.33(11)	N(1)-S-Rb#4	119.41(9)
O(3)#4-Rb-O(2)#7	75.11(11)	Rb#9-S-Rb#4	100.23(4)
O(1)#5-Rb-O(2)#7	44.48(10)	S-O(1)-Rb	155.1(3)

O(1)#6-Rb-O(2)#7	101.97(11)	S-O(1)-Rb#9	103.1(2)
O(2)#6-Rb-O(2)#7	124.58(16)	Rb-O(1)-Rb#9	96.40(10)
O(1)#1-Rb-N(2)#4	86.69(12)	S-O(2)-Rb#9	98.47(14)
O(1)-Rb-N(2)#4	86.69(12)	S-O(2)-Rb#4	98.47(14)
O(4)#2-Rb-N(2)#4	60.01(16)	Rb#9-O(2)-Rb#4	124.58(16)
O(3)#3-Rb-N(2)#4	20.58(6)	N(2)-O(3)-Rb#7	99.2(3)
O(3)#4-Rb-N(2)#4	20.58(6)	N(2)-O(4)-Rb#10	132.2(5)
O(1)#5-Rb-N(2)#4	134.99(9)	O(4)-N(2)-O(3)	120.1(3)
O(1)#6-Rb-N(2)#4	134.99(9)	O(4)-N(2)-O(3)#11	120.1(3)
O(2)#6-Rb-N(2)#4	92.53(10)	O(3)-N(2)-O(3)#11	119.9(5)
O(2)#7-Rb-N(2)#4	92.53(10)	O(4)-N(2)-Rb#7	173.0(4)
O(1)#1-Rb-S#7	149.25(9)	O(3)-N(2)-Rb#7	60.2(3)
O(1)-Rb-S#7	89.58(10)	O(3)#11-N(2)-Rb#7	60.2(3)
O(4)#2-Rb-S#7	77.57(8)		

 $\#1 - x, y, z \ \#2 \ x-1, y-1, z \ \#3 \ x-1, -y+1, z-1/2 \ \#4 - x+1, -y+1, z-1/2 \ \#5 \ x, -y+1, z+1/2 \ \#6 - x, -y+1, z+1/2$

#7 -x+1,-y+1,z+1/2 #8 -x+1,y,z #9 -x,-y+1,z-1/2 #10 x+1,y+1,z #11 -x+2,y,z

Figure S1. Calculated and experimental powder X-ray diffraction patterns of Rb(NO₃)(SO₃NH₃).

Figure S2. Energy dispersive X-ray spectroscopy analysis of Rb(NO₃)(SO₃NH₃).

Figure S3. TG-DTA curves of Rb(NO₃)(SO₃NH₃).

Figure S4. Partial density of states (PDOS) curves for RbNO₃ and Rb(NO₃)(SO₃NH₃).

Figure S5. The SHG density of KNO₃SO₃NH₃ and Rb(NO₃)(SO₃NH₃).