Supplementary Information

Hangwei Jia¹, Die Xu¹, Zijian Li^{1,2}, Muhammad Arif^{1,2}, Yansheng Jiang¹, Xueling Hou^{1,2*}

¹Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special

Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute

of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China

²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing

100049, China

E-mail: xlhou@ms.xjb.ac.cn

Table of Contents

Fig. S1 The theoretical morphology of $(C_3N_6H_7)BF_4$ ·H ₂ O.	2
Fig. S2 Infrared spectra for (a) $(C_3N_6H_7)BF_4$ ·H ₂ O and (b) $(C_3N_6H_7)SO_3CH_3$ ·H ₂ O	2
Fig. S3 Experiment band gap for (a) $(C_3N_6H_7)BF_4$ ·H ₂ O and (b) $(C_3N_6H_7)SO_3CH_3$ ·H ₂ O	2
Fig. S4 Comparisons of the orientation of $[C_3H_7N_6]^+$ groups in reported compounds	3
Fig. S5 Electronic band structures for (a) $(C_3N_6H_7)BF_4$ ·H ₂ O and (b) $(C_3N_6H_7)SO_3CH_3$ ·H ₂ O4	4
Table S1. Crystallographic data for (C ₃ N ₆ H ₇)BF ₄ ·H ₂ O and (C ₃ N ₆ H ₇)SO ₃ CH ₃ ·H ₂ O	5
Table S2. The fractional atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters	
$(Å^2 \times 10^3)$ for $(C_3N_6H_7)BF_4 \cdot H_2O$	6
Table S3. Bond lengths [Å] and angles [°] for $(C_3N_6H_7)BF_4$ ·H ₂ O.	7
Table S4. Hydrogen bonds for $(C_3N_6H_7)BF_4$ ·H2O.	7
Table S5. The fractional atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters	
$(Å^2 \times 10^3)$ for $(C_3N_6H_7)SO_3CH_3 \cdot H_2O_3$.	8
Table S6. Bond lengths [Å] and angles [°] for (C ₃ N ₆ H ₇)SO ₃ CH ₃ ·H ₂ O.	9
Table S7. Hydrogen bonds for (C ₃ N ₆ H ₇)SO ₃ CH ₃ ·H ₂ O.	9
Table S8. Comparisons of the $[C_3N_6H_7]^+$ density, optical properties in reported compounds10	0

Fig. S1 The theoretical morphology of $(C_3N_6H_7)BF_4 \cdot H_2O$.

Fig. S2 Infrared spectra for (a) $(C_3N_6H_7)BF_4 \cdot H_2O$ and (b) $(C_3N_6H_7)SO_3CH_3 \cdot H_2O$.

Fig. S3 Experiment band gap for (a) $(C_3N_6H_7)BF_4 \cdot H_2O$ and (b) $(C_3N_6H_7)SO_3CH_3 \cdot H_2O$.

Fig. S4 Comparisons of the orientation of $[C_3H_7N_6]^+$ groups in reported compounds.

 $(C_3N_6H_7)SO_3CH_3 \cdot H_2O.$

Empirical formula	$(C_3N_6H_7)BF_4$ · H_2O	$(C_3N_6H_7)BF_4$ · H_2O	(C ₃ N ₆ H ₇)SO ₃ CH ₃ ·H ₂ O
Formula weight	231.97	231.97	240.026
Temperature/K	153	298	298
Crystal system	Triclinic	Triclinic	Triclinic
Space group	Р	Р	Р
a/Å	5.5980(9)	5.7474(7)	6.5998(9)
b/Å	7.4799(13)	7.4778(9)	6.7955(9)
c/Å	11.727(2)	11.7695(14)	12.2611(15)
α/°	102.107(6)	101.789(5)	76.662(5)
β/°	94.096(6)	94.130(5)	85.122(4)
γ/°	110.999(6)	110.156(5)	71.706(4)
Volume/Å ³	442.40(13)	459.22(10)	507.97(12)
Ζ	2	2	2
$ ho_{calc.}$ / g/cm ³	1.741	1.678	1.571
μ/mm^{-1}	0.182	0.175	0.328
<i>F</i> (000)	236	236	252
Radiation	Mo Ka ($\lambda = 0.71073$)	Mo Ka ($\lambda = 0.71073$)	Μο Κα (λ = 0.71073)
2θ range/°	1.799 to 25.337	1.789 to 25.342	3.414 to 50.734
Index ranges	$-6 \le h \le 6, -8 \le k \le 8, -14$ $\le l \le 14$	$-6 \le h \le 6, -8 \le k \le 8, -14$ $\le l \le 14$	$-7 \le h \le 7, -8 \le k \le 8, -14 \le l$ ≤ 14
Reflns collected	5462	6159	8526
Unique reflns (R _{int})	1594 [$R_{int} = 0.0525$]	1644 [$R_{int} = 0.0408$]	1845 [$R_{\rm int} = 0.0870$]
Data/restraints/param	1594 / 0 / 140	1644/4/186	1845/0/141
Goodness-of-fit on F ²	1.151	1.039	1.061
$R_1^{a)}/wR_2^{b)}$ [I>=2 σ (I)]	0.0415/0.1026	0.0526/0.1314	0.0494/0.1146
$R_1^{a)}/wR_2^{b)}$ [all data]	0.0457/0.1076	0.0695/0.1480	0.0656/0.1323
Largest diff. peak/hole / e Å ⁻³	0.43/-0.44	0.28/-0.24	0.45/-0.37

Table S1. Crystallographic data for $(C_3N_6H_7)BF_4 \cdot H_2O$ and $(C_3N_6H_7)SO_3CH_3 \cdot H_2O$.

 $a R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ and $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$

Atom	X	У	Z	U(eq)	
C(1)	2909(3)	8601(2)	7925(2)	18(1)	
C(2)	2061(3)	7934(2)	9688(2)	19(1)	
C(3)	4392(3)	6428(3)	8662(2)	19(1)	
N(1)	2811(3)	9497(2)	7078(1)	25(1)	
N(2)	1792(3)	8903(2)	8863(1)	20(1)	
N(3)	1018(3)	8250(2)	10650(1)	23(1)	
N(4)	3328(3)	6688(2)	9622(1)	20(1)	
N(5)	5657(3)	5229(2)	8501(1)	25(1)	
N(6)	4246(3)	7382(2)	7805(1)	20(1)	
B(1)	11067(4)	7698(3)	3696(2)	22(1)	
F(1)	10915(2)	6349(2)	2640(1)	27(1)	
F(2)	11740(2)	9560(2)	3481(1)	33(1)	
F(3)	8691(2)	7178(2)	4065(1)	43(1)	
F(4)	12948(3)	7715(2)	4540(1)	40(1)	
O(1)	6889(3)	6214(2)	6134(1)	29(1)	

Table S2. The fractional atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters (Å²×10³) for (C₃N₆H₇)BF₄·H₂O.

 U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Table S3. Bond lengths [Å] and angles [°] for $(C_3N_6H_7)BF_4$ ·H₂O. 6

Atom- Atom	Length[Å]	Atom- Atom- Atom	Angle[°]
C1-N1	1.317(2)	C(1)-N(2)-C(2)	115.96(14)
C1-N2	1.322(2)	C(3)-N(4)-C(2)	115.72(14)
C1-N6	1.364(2)	C(3)-N(6)-C(1)	119.24(15)
C2-N2	1.355(2)	F(2)-B(1)-F(1)	108.18(15)
C2-N3	1.323(2)	F(3)-B(1)-F(1)	109.67(16)
C2-N4	1.353(2)	F(3)-B(1)-F(2)	108.90(15)
C3-N4	1.322(2)	F(3)-B(1)-F(4)	111.03(16)
C3-N5	1.321(2)	F(4)-B(1)-F(1)	109.05(15)
C3-N6	1.363(2)	F(4)-B(1)-F(2)	109.97(16)
B1-F1	1.400(2)	N(1)-C(1)-N(2)	121.07(15)
B1-F2	1.389(2)	N(1)-C(1)-N(6)	117.44(15)
B1-F3	1.374(2)	N(2)-C(1)-N(6)	121.47(15)
B1-F4	1.387(2)	N(3)-C(2)-N(2)	117.20(15)
		N(3)-C(2)-N(4)	117.00(15)
		N(4)-C(2)-N(2)	125.79(15)
		N(4)-C(3)-N(6)	121.79(15)
		N(5)-C(3)-N(4)	120.82(16)
		N(5)-C(3)-N(6)	117.38(16)

Table S4. Hydrogen bonds for $(C_3N_6H_7)BF_4 \cdot H_2O$.

D-H	d(D-H)	d(HA)	d(DA)	∠DHA
O(1)-H(1C)F(3)	0.87	2.03	2.8266(18)	150.9
N(6)-H(6)O(1)	0.88	1.88	2.7231(19)	158.9
N(5)-H(5B)F(1)#1	0.88	2.20	2.8621(19)	132.2

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1

Table S5. The fractional atomic coordinates $(\times 10^4)$ and equivalent isotropic

Atom	X	у	Z	U(eq)
C1	7515(4)	5336(4)	3876(2)	30.3(7)
C2	4840(4)	4269(4)	3258(2)	31.3(7)
C3	6876(4)	2272(4)	4752(2)	30.7(7)
C4	8091(6)	2833(6)	701(3)	52.3(9)
N1	5951(4)	5683(4)	3139(2)	32.6(6)
N2	5309(4)	2507(4)	4045(2)	33.0(6)
N3	7974(4)	3663(4)	4719.0(19)	30.4(6)
N4	8545(4)	6762(4)	3725(2)	40.4(7)
N5	3293(4)	4719(4)	2539(2)	43.1(7)
N6	7360(4)	526(4)	5544(2)	39.4(7)
01	10244(4)	2412(5)	2439(2)	62.3(8)
02	10542(4)	-742(4)	1789(2)	65.3(8)
03	12159(4)	1827(4)	741(2)	58.3(7)
O4	5929(4)	8762(5)	1365(2)	73.1(10)
S1	10402.4(12)	1470.5(12)	1483.3(6)	38.1(3)

displacement parameters (Å²×10³) for (C₃N₆H₇)SO₃CH₃·H₂O.

 $U_{eq} \mbox{ is defined as 1/3 of the trace of the orthogonalised } U_{ij} \mbox{ tensor.}$

Table S6. Bond lengths [Å] and angles [°] for $(C_3N_6H_7)SO_3CH_3 \cdot H_2O$.

Atom- Atom	Length[Å]	Atom	Angle[°]
C1-N1	1.358(4)	C1-N3-C3	115.4(2)
C1-N3	1.322(4)	C2-N1-C1	119.5(3)
C1-N4	1.321(4)	C2-N2-C3	115.7(2)
C2-N1	1.357(4)	N2-C2-N1	121.5(3)
C2-N2	1.321(4)	N2-C2-N5	121.6(3)
C2-N5	1.322(4)	N3-C1-N1	121.7(3)
C3-N2	1.354(4)	N3-C3-N2	126.0(3)
C3-N3	1.352(4)	N4-C1-N1	117.1(3)
C3-N6	1.318(4)	N4-C1-N3	121.2(3)
S1-C4	1.748(3)	N5-C2-N1	116.9(3)
S1-O1	1.441(3)	N6-C3-N2	116.5(3)
S1-O2	1.438(3)	N6-C3-N3	117.5(3)
S1-O3	1.458(2)	O1-S1-C4	107.18(17)
		O1-S1-O3	111.02(17)
		O2-S1-C4	108.28(18)
		O2-S1-O1	112.98(18)
		O2-S1-O3	111.60(16)
		O3-S1-C4	105.35(17)

Table S7. Hydrogen bonds for $(C_3N_6H_7)SO_3CH_3$ ·H₂O.

		-		
D-H	d(D-H)	d(HA)	d(DA)	∠DHA
N1-H1O4	0.8700	1.803(4)	2.645(4)	162.09(11)
N5-H5AO1#3	0.8700	2.087(4)	2.938(4)	165.82(11)
O4-H4FO3#1	0.8599	1.880(10)	2.729(4)	169(5)
O4-H4GO3#2	0.8598	1.994(12)	2.833(4)	165(4)

Symmetry transformations used to generate equivalent atoms: #1+0 #2 x+2,y+1,z #3+0

No	Species		Density (×10 ⁻³ Å)	Birefringence (@546 nm) ^c	UV Cut-off(nm)
1	$(C_3N_6H_8)PbBr_4^1$	3.13°	3.14	0.29@550nm	374
2	$(C_3N_6 H_8)SnCl_4^2$	3.71°	3.45	0.34@550nm	334
3	$(H_7C_3N_6)\cdot(H_6C_3N_6)ZnCl_3^3$	3.95°	5.35	0.26@1064nm	236
4	$(C_3N_6H_6)_4HPF_6^4$	4.12°	4.57	0.26	300
5	$(C_3N_6H_7)_3HgCl_5^5$	4.19°	3.38	0.093 @1064nm	290
6	$(C_3N_6H_6)_2(C_3N_6H_7)PF_6 \cdot H_2O^4$	4.20°	5.77	0.24	300
7	$(C_3N_6H_7) \cdot (C_3N_6H_6)HgCl_3^5$	4.40°	5.23	0.25@1064nm	278
8	H ₆ C ₃ N ₆ ⁶	4.60°	7.73	0.26	248
9	$(C_{3}H_{7}N_{6})_{6}(H_{2}PO_{4})_{4}(HPO_{4})\cdot 4H_{2}O^{7}$	4.6e	/	0.22@1064nm	/
10	$(C_{3}H_{7}N_{6})_{2}SO_{4}\cdot 2H_{2}O^{7}$	4.62°	5.25	/	/
11	$(C_3H_7N_6)_2Cl_2\cdot H_2O^6$	4.70°	5.63	0.33@550nm	230
12	$(C_3H_7N_6)F\cdot H_2O^6$	4.72°	6.00	0.38@550nm	220
13	(C ₃ N ₆ H ₇) ₂ (B ₃ O ₃ F ₄ (OH) ⁸	4.72°	4.98	0.44	240
14	$(C_3N_6H_7)_2SbF_5\cdot H_2O^9$	4.74°	4.89	0.38@550nm	220
15	$2(C_{3}H_{7}N_{6})^{+}\cdot 2Cl^{-}\cdot H_{2}O^{10}$	4.75°	5.58	0.28	245
16	$(C_3N_6H_7)_2SiF_6\cdot H_2O^{11}$	4.76°	5.31	0.15@550nm	220
17	(C ₃ N ₆ H ₇)SO ₃ CH ₃ ·H ₂ O	4.80°	3.94	0.31	233
18	(C ₃ N ₆ H ₇)BF ₄ ·H ₂ O	5.05°	3.39	0.37	244
19	$C_3N_6H_7SO_3NH_2^{12}$	5.53°	3.20	0.34	206

Table S8. Comparisons of the $[C_3N_6H_7]^+$ density, optical properties in reported compounds.

Note: Upper corner "e" is the experimental value, upper corner "c" is the theoretical calculation value.

References

- W. Q. Huang, X. Zhang, Y. Q. Li, Y. Zhou, X. Chen, X. Q. Li, F. F. Wu, M. C. Hong, J. H. Luo and S. G. Zhao, A hybrid halide perovskite birefringent crystal, *Angew. Chem. Int. Ed.*, 2022, 61, e202202746.
- W. Q. Huang, X. L. Wu, B. Ahmed, Y. Q. Li, Y. Zhou, H. Wang, Y. P. Song, X. J. Kuang, J. H. Luo and S. G. Zhao, A hybrid halide lead-free pseudo-perovskite with large birefringence, *Inorg. Chem. Front.*, 2023, 10, 2039.
- L. H. Liu, Z. Y. Bai, L. Hu, D. S. Wei, Z. B. Lin and L. Z. Zhang, A melamine-based organicinorganic hybrid material revealing excellent optical performance and moderate thermal stability, *J. Mater. Chem. C*, 2021, 9, 7452.
- 4. L. H. Liu, F. F. Yuan, Y. S. Huang, Z. B. Lin and L. Z. Zhang, Two UV optical crystals with strong optical anisotropy, large band gaps and an alpha-BBO type structure, *Dalton Trans*, 2023, **52**, 5798.
- Z. Y. Bai, J. Lee, H. Kim, C. L. Hu and K. M. Ok, Unveiling the superior optical properties of novel melamine-based nonlinear optical material with strong second-harmonic generation and giant optical anisotropy, *Small*, 2023, 19, 2301756.
- Y. G. Shen, L. Ma, G. F. Dong, H. L. Yu and J. H. Luo, β-(C₃H₇N₆)₂Cl₂·H₂O and (C₃H₇N₆)F·H₂O: two UV birefringent crystals induced by uniformly aligned structural groups, *Inorg. Chem. Front.*, 2023, 10, 2022.
- S. F. Li, L. Hu, Y. Ma, F. F. Mao, J. Zheng, X. D. Zhang and D. Yan, Noncentrosymmetric (C₃H₇N₆)₆(H₂PO₄)₄(HPO₄)·4H₂O and centrosymmetric (C₃H₇N₆)₂SO₄·2H₂O: exploration of acentric structure by combining planar and tetrahedral motifs via hydrogen bonds, *Inorg. Chem.*,

2022, 61, 10182.

- C. C. Jin, F. M. Li, Z. H. Yang, S. L. Pan and M. Mutailipu, [C₃N₆H₇]₂[B₃O₃F₄(OH)]: a new hybrid birefringent crystal with strong optical anisotropy induced by mixed functional units, *J. Mater. Chem. C*, 2022, **10**, 6590.
- Y. G. Shen, B. Chen, H. Chen and J. H. Luo, (C₃N₆H₇)₂SbF₅·H₂O exhibiting strong optical anisotropy from the optimal arrangement of π-conjugated (C₃N₆H₇)⁺ groups, *Inorg. Chem.*, 2022, 61, 14242.
- L. H. Liu, C. L. Hu, Z. Y. Bai, F. F. Yuan, Y. S. Huang, L. Z. Zhang and Z. B. Lin, 2(C₃H₇N₆)⁺.2Cl⁻. H₂O: an ultraviolet nonlinear optical crystal with large birefrigence and strong second-harmonic generation, *Chem. Commun.*, 2020, 56, 14657.
- Y. G. Shen, Y. W. Zhou, X. L. Xue, H. L. Yu, S. G. Zhao and J. H. Luo, (C₃N₆H₇)₂SiF₆·H₂O: an ultraviolet birefringent crystal exceeding the intrinsic energy gap of an organic reagent, *Inorg. Chem. Front.*, 2022, 9, 5226.
- D. Y. Dou, Q. Shi, Y. J. Bai, C. Chen, B. B. Zhang and Y. Wang, C₃N₆H₇SO₃NH₂: non-π-conjugated tetrahedra decoupling π-conjugated groups achieving large optical anisotropy and wide band gap, *Mater. Chem. Front.*, 2023, 7, 5924.