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S1. Computational Methods

1.1 First-principles calculations of defect properties
Our first-principles calculations were based on the density functional theory (DFT) as 

implemented in the Vienna Ab initio Simulation Package (VASP) program.1, 2 The exchange and 

correlation interaction were calculated by using the generalized gradient approximation 

(GGA) with Perdew, Burke, and Ernzerhof (PBE) function3. The interaction between the ionic 

cores and valence electrons was treated by the projector augmented wave (PAW) 

pseudopotentials4 with a plane-wave energy cutoff of 400 eV. For the β-MAPbI3 unit cell, its 

structural optimization for both lattice and atomic coordinates was performed using a 

Monkhorst-Pack (MP) mesh5 of 4x4x3 k-points in the first Brillouin zone (BZ). The convergence 

criteria of total energy and force were less than 1x10-5 eV and 0.01 eV/Å, respectively. The 

simulated lattice constants were a=8.87 Å and c=13.11 Å, consistent with previous experiment 

results (a=8.85 Å and c=12.64 Å)6. For the defect property calculations, a 2x2x2 supercell with 

384-atom was employed to construct the intrinsic defect structures, and the PBE+SOC (spin-

orbit coupling) method was used to optimize the global structure (energy and force 

convergence criteria of 1x10-4 eV and 0.04 eV/Å, k-point using a 1x1x1 gamma mesh). Based 

on the optimized geometries, we then employed the more accurate hybrid functional 

calculation with the mixing parameter of 0.36 to obtain a good band gap, and SOC was 

included. Our HSE+SOC simulation for pristine MAPbI3 supercell yields a band gap of 1.53 eV, 

agreement with the experimental value of 1.53 eV.6

In order to obtain the defect formation energies and charged transition levels, we 

calculated the total energy  for a 2x2x2 supercell containing the relaxed defect  in its 𝐸(𝛼,𝑞) 𝛼

charged state , and total energy  of pristine system with the same size. The defect 𝑞 𝐸(𝑀𝐴𝑃𝑏𝐼3)

formation energy is given by the fallowing formula7-9: 

         (1)
Δ𝐻𝑓(𝛼,𝑞) = 𝐸(𝛼,𝑞) ‒ 𝐸(𝑀𝐴𝑃𝑏𝐼3) + ∑𝑛𝑖(𝜇𝑖 + 𝐸𝑖) + 𝑞(𝐸𝑉𝐵𝑀 + 𝐸𝐹 + Δ𝑉)

where  indicates the atom number of element ( ) taken out from pristine supercell to form 𝑛𝑖 𝑖
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the corresponding defect system.  is the chemical potential (CP) of constituent ( ), and  𝜇𝑖 𝑖 𝐸𝑖

stands for the total energy of elemental solids of gas at most stable phase.  is the energy 𝐸𝑉𝐵𝑀

of the valence band maximum (VBM) in pristine system, and  is the Fermi energy relative 𝐸𝐹

to the VBM.  is the correction value for the electronic potential alignment between the ∆𝑉

supercells with and without the defect.

The defect charged transition energy level (or the thermodynamic ionization level) 

 of a defect is defined as  position, which satisfies that the formation energy of 𝜀(𝑞/𝑞') 𝐸𝐹

defect  at the charged state  is equal to that of charged state , i.e., = . 𝛼 𝑞 𝑞' Δ𝐻𝑓(𝛼,𝑞) Δ𝐻𝑓(𝛼,𝑞')

This quantity is calculated by applying the general expression:

                                          (2)𝜀(𝑞/𝑞') = [𝐸(𝛼,𝑞) ‒ 𝐸(𝛼,𝑞')]/(𝑞' ‒ 𝑞)

     
1.2 Thermodynamic simulation methods
For any semiconductor system, maintaining the electric neutrality necessitates that total 

charge of its defect adheres to the condition wherein the sum of positive charges equals the 

sum of negative charges. This relationship is expressed as10:

                                                     (3)
𝑝0 + ∑

𝑖

𝑞𝑖𝑛
𝑞 +

𝑖
𝐷𝑖

= 𝑛0 + ∑
𝑗

𝑞𝑗𝑛
𝑞 ‒

𝑗
𝐴𝑗

where  and  represent the densities of the thermally excited electrons and holes, 𝑝0 𝑛0

respectively, depending on the  of system, as elucidated in Equation (3). The terms 𝐸𝐹

and signify the cumulative concentration of various donor defects ( ) in 
∑

𝑖

𝑞𝑖𝑛
𝑞 +

𝑖
𝐷𝑖 ∑

𝑗

𝑞𝑗𝑛
𝑞 ‒

𝑗
𝐴𝑗 𝑛𝐷𝑖

their respective positive charge states ( ) and acceptor defect concentration ( ) in their 𝑞 +
𝑖

𝑛𝐴𝑗

respective negative charge states ( ). Meanwhile, these concentrations are influenced by 𝑞 ‒
𝑗

the formation energy of various defect (α) and absolute temperature (T), as depicted in 

Equation (5). The calculation formulas of these parameters are:

                                                 𝑝0 = 𝑁𝑣𝑒
‒

𝐸𝐹 ‒ 𝐸𝑣
𝑘𝐵𝑇

,          𝑛0 = 𝑁𝑐𝑒
‒

𝐸𝑐 ‒ 𝐸𝐹
𝑘𝐵𝑇

                                       (4)
𝑁𝑣 = 2(2𝜋𝑚 ∗

ℎ 𝑘𝐵𝑇

ℎ2 )
3
2  , 𝑁𝑐 = 2(2𝜋𝑚 ∗

𝑒 𝑘𝐵𝑇

ℎ2 )
3
2



                                                              (5)𝑛(𝛼,𝑞) = 𝑁0𝑒
‒

Δ𝐻𝑓
𝑘𝐵𝑇

  

where  and  denote the temperature-dependent effective density of conduction band (𝑁𝑐 𝑁𝑣

) and valence band ( ), respectively. The effective masses of electrons and holes,  and 𝐸𝑐 𝐸𝑣 𝑚 ∗
𝑒

, are specified as = 0.18  and = 0.24  for MAPbI3.11 The defect concentration 𝑚 ∗
ℎ 𝑚 ∗

𝑒 𝑚0 𝑚 ∗
ℎ 𝑚0

 can be evaluated by Boltzmann law and calculating the defect formation energy ( ) 𝑛(𝛼,𝑞) ∆𝐻𝑓

through first-principles calculations.  is the density of possible sites for defect α. Through 𝑁0

self-consistent solution of the above multiple-equations, we can obtain the , defect 𝐸𝐹

concentration, and defect type with maximum defect concentration of semiconductor system 

at any given CP.

1.3 NAMD simulation methods
To balance the relationship between the computational cost and the reliability of results in 

NAMD simulation, we adopted 2x2x1 supercell structure. Since β-MAPbI3 is a semiconductor 

material with a direct energy gap (located at the Gamma point), we use a single k-point (1x1x1) 

for the MD simulation. After re-optimizing the geometry structure (2x2x1, including pristine 

and defect systems) at 0 K, we perform the Born-Oppenheimer MD simulations using the Nosé 

thermostat12, 13 at 300 K, and obtain a 3 ps trajectory with a time step of 1 fs using the 

canonical ensemble, which is used for the NA coupling calculation. This process uses the 

Python eXtension for Ab Initio Dynamics (PYXAID)14, 15 and Quantum Espresso (QE)16 to 

calculate NA Hamiltonian. The NAMD simulation is carried out using the semiclassical 

decoherence-induced surface hopping (DISH) technique.17 In order to achieve reliable data, 

we perform the iterative calculations for each NA Hamiltonian to obtain double the 

Hamiltonian as input data for NAMD simulation. We choose the first half of the double 

trajectories as the initial condition for calculating the e-h recombination, and sample the initial 

condition with 1000 random processes.

S2. Computational details of the coupled kinetic equations

Table S1 summarizes the carrier lifetime of pairwise transitions for perfect and various 
dominant defect systems by the exponential fitting. The reciprocal of lifetime represents the 
rate of carrier recombination between pairwise states (described by the symbol k), which 

strongly dependent on the NAC matrix elements  between pairwise states, as described by 𝑑𝑖𝑗



the following formula18-20: , where H represents the Hamiltonian from the 
𝑑𝑖𝑗 =

〈𝜑𝑗|∇𝑅𝐻|𝜑𝑖〉
𝜀𝑗 ‒ 𝜀𝑖

𝑅̇

KS equation,  and  are the wave functions of states  and ,  and  are their eigenvalues, 𝜑𝑖 𝜑𝑗 𝑖 𝑗 𝜀𝑖 𝜀𝑗

and  is the nuclear velocity. As can be seen from the formula, the smaller energy gap, 𝑅̇
stronger electron-phonon coupling, and higher nuclear rate all indicate an increased in the 
carrier recombination rate. In order to systematically illustrate the total lifetime of excited 
carriers, it is necessary to consider the whole carrier transition process. Hence, we establish a 
dynamic model to describe the carrier coupling dynamics of various systems. The detailed 
description of the carrier recombination/trapping dynamics of these systems is as follows:

(1) For the perfect and resonant defect systems: carrier recombination between 

electrons in CBM and holes in VBM, as depicted by in the process 1 in Fig. 5a, .𝜅(𝐶𝐵𝑀→𝑉𝐵𝑀)

(2) For systems with defective states inside the bandgap, including shallow- and deep-

level defect systems: carrier recombination between electrons in CBM and holes in VBM, as 

depicted by process 1 in Fig. 5a, ; electrons trapping by defect states (process 2, 𝜅(𝐶𝐵𝑀→𝑉𝐵𝑀)

); recombination of electrons in defect sates with holes in VBM (process 3, 𝜅(𝐶𝐵𝑀→𝑡𝑟𝑎𝑝)

); hole trapping by defect states (process 4, );𝜅(𝑡𝑟𝑎𝑝→𝑉𝐵𝑀) 𝜅(𝑉𝐵𝑀→𝑡𝑟𝑎𝑝)

Thus, the coupled kinetic equations for the perfect and defective systems with the 

resonant defect states in perovskite MAPbI3 are: 

                                                 (6)

𝑑[𝑉𝐵𝑀]
𝑑𝑡

=‒ 𝑘(𝐶𝐵𝑀→𝑉𝐵𝑀)[𝑉𝐵𝑀]

                                               (7)

𝑑[𝐶𝐵𝑀]
𝑑𝑡

=    𝑘(𝐶𝐵𝑀→𝑉𝐵𝑀)[𝐶𝐵𝑀]

The coupled kinetics equations for  and  systems are:       𝑉 0
𝑀𝐴 𝑃𝑏 + 1

𝑖

                                    (8)

𝑑[𝑉𝐵𝑀]
𝑑𝑡

=‒ (𝑘(𝐶𝐵𝑀→𝑉𝐵𝑀) + 𝑘(𝑉𝐵𝑀→𝑡𝑟𝑎𝑝))[𝑉𝐵𝑀]

                       (9)

𝑑[𝑡𝑟𝑎𝑝]
𝑑𝑡

= 𝑘(𝑉𝐵𝑀→𝑡𝑟𝑎𝑝)[𝐶𝐵𝑀] ‒ 𝑘(𝐶𝐵𝑀→𝑡𝑟𝑎𝑝))[𝑡𝑟𝑎𝑝]

                     (10)

𝑑[𝐶𝐵𝑀]
𝑑𝑡

= 𝑘(𝐶𝐵𝑀→𝑉𝐵𝑀)[𝑉𝐵𝑀] + 𝑘(𝐶𝐵𝑀→𝑡𝑟𝑎𝑝))[𝑡𝑟𝑎𝑝]

The coupled kinetics equations for ,  and  systems are:       𝑉 0
𝑃𝑏 𝑉0

𝐼 𝐼 + 1
𝑖

                              (11)

𝑑[𝑉𝐵𝑀]
𝑑𝑡

=‒ (𝑘(𝐶𝐵𝑀→𝑉𝐵𝑀) + 𝑘(𝐶𝐵𝑀→𝑡𝑟𝑎𝑝))[𝑉𝐵𝑀]



                        (12)

𝑑[𝑡𝑟𝑎𝑝]
𝑑𝑡

= 𝑘(𝐶𝐵𝑀→𝑡𝑟𝑎𝑝)[𝐶𝐵𝑀] ‒ 𝑘(𝑡𝑟𝑎𝑝→𝑉𝐵𝑀))[𝑡𝑟𝑎𝑝]

                        (13)

𝑑[𝐶𝐵𝑀]
𝑑𝑡

= 𝑘(𝐶𝐵𝑀→𝑉𝐵𝑀)[𝑉𝐵𝑀] + 𝑘(𝑡𝑟𝑎𝑝→𝑉𝐵𝑀))[𝑡𝑟𝑎𝑝]

Where [VBM], [trap] and [CBM] are populations of the VBM, trap and CBM states, 

respectively. The overall electron lifetime at CBM for all systems are obtained by the 

exponential fitting, and results are shown in Table S1 and Fig. 5b.

Here, we use the  defect in perovskite MAPbI3 as an example to describe the carrier 𝐼 + 1
𝑖

relaxation and trapping process (see Table S1 and Fig. 5a). Carrier lifetime or capture rate for 

the transition of pairwise states is obtained by the DISH method for the two electronic states 

of interest, and the corresponding fitting results are shown in Fig. S5, S6 and S7.

S3. Supplementary figures and tables

Fig. S1. Defect binding energy of all antisite defects in β-phase MAPbI3.



Fig. S2. Evolution process of detailed atomic configuration of the dominant antisite defects in 
perovskite MAPbI3.

Fig. S3. Projected density of states (PDOS) for pristine MAPbI3 and various defect systems with 
the different charged states. The energy reference is located at the VBM level. The insets show 
the charge densities of the band edges in pristine MAPbI3 and the key defect states in defect 
systems, and the local defect configuration obtained by the optimized geometry. The black 



circle indicates the defect position.

Fig. S4. The time evolution of VBM, CBM and defect states for MAPbI3 system at 300 K. 

Fig. S5. Population of the CBM state due to relaxation from CBM to VBM in β-MAPbI3 with 

 defect. The fitting function is f(t)=t/(53.09x106).𝐼 + 1
𝑖



Fig. S6. Population of the defect state (DS) during electron trapping in β-MAPbI3 with the 

 defect. The fitting function is f(t)=t/(1.1x104).𝐼 + 1
𝑖

Fig. S7. Population of the defect state (DS) due to recombination of trapped electron with 

valence band hole in β-MAPbI3 with the  defect. The fitting function is f(t)=t/(7.51x106).𝐼 + 1
𝑖

Table S1. Bandgap (eV), Average NA coupling (meV), Nonradiative electrons-hole 
recombination rate (ns-1), and overall lifetime (ns) for the perfect and various domination 



interstitial and vacancy defects in MAPbI3.
Bandgap

(eV)
NA coupling

(meV)
Rate constant 

(ns-1)
Overall Lifetime

(ns)
Perfect CBM→VBM 1.53 0.327 0.016 64.29
𝑉 0

𝑀𝐴 CBM→VBM 1.69 0.337 0.032
CBM → Trap 1.46 0.285 0.024
VBM → Trap 0.23 3.124 41.667

40.85

𝑉 ‒ 1
𝑀𝐴 CBM→VBM 1.57 0.351 0.021 48.15

𝑉 0
𝑃𝑏 CBM→VBM 1.54 0.296 0.018

CBM → Trap 1.47 0.356 0.028
Trap → VBM 0.07 6.971 227.273

21.74

𝑉 ‒ 2
𝑃𝑏 CBM→VBM 1.59 0.292 0.021 47.89

𝑉0
𝐼 CBM→VBM 1.79 0.315 0.016

CBM → Trap 0.30 3.234 45.455
Trap → VBM 1.49 0.391 0.028

35.83

𝑉 + 1
𝐼 CBM→VBM 1.59 0.273 0.017 58.36

𝑀𝐴 + 1
𝑖 CBM→VBM 1.57 0.275 0.016 60.79

𝑃𝑏 + 1
𝑖 CBM→VBM 1.84 0.377 0.024

CBM → Trap 0.32 0.896 3.984
VBM → Trap 1.52 0.381 0.198

4.72

𝑃𝑏 + 2
𝑖 CBM→VBM 1.55 0.352 0.023 44.04

𝐼 + 1
𝑖 CBM→VBM 1.56 0.287 0.019

CBM → Trap 0.16 2.020 90.909
Trap → VBM 1.40 0.292 0.133

7.52

𝐼 ‒ 1
𝑖 CBM→VBM 1.51 0.291 0.018 55.74

Table S2. Reaction energy ( ) indicates self-healing (non-self-healing) behavior of defect 𝐸𝑟

pairs.
Self-healing behaviors

Vacancy defects Interstitial defect
Reaction energy 

(meV/unit)
𝑉 0

𝑀𝐴 𝑀𝐴0
𝑖 -44

𝑉 ‒ 1
𝑀𝐴 𝑀𝐴 + 1

𝑖 -18
𝑉 0

𝑃𝑏 𝑃𝑏0
𝑖 -75

𝑉 ‒ 1
𝑃𝑏 𝑃𝑏 + 1

𝑖 -43
𝑉 ‒ 2

𝑃𝑏 𝑃𝑏 + 2
𝑖 -18

𝑉0
𝐼 𝐼0

𝑖 -46
𝑉 ‒ 1

𝐼 𝐼 + 1
𝑖 -55

𝑉 + 1
𝐼 𝐼 ‒ 1

𝑖 -24
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