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Experimental

Synthesis of VTiFe alloy

All raw materials were commercially purchased and used without further 

purification. VTiFe alloy catalyst was synthesized via wet chemical mechanical milling 

under Ar atmosphere (99.999% purity). Briefly, a mixture of 1.625 g V, 0.680 g Ti and 

2.695 g Fe (99% purity, Linyi Research and Innovation Materials Co., Ltd.) was milled 

in a planetary ball mill (FRITSCH Pulverisette 4) using stainless steel jar and balls. To 

prevent excessive cold welding, 15 mL of heptane was added as a process control 

agent. The milling was performed at a speed of 350 rpm with a ball-to-material weight 

ratio of 10:1. The milling was carried out in an alternating forward and reverse mode, 

with a 5 min pause every 15 min, for a total of 40 h. The as-synthesized VTiFe alloy 

catalyst was vacuum-dried at 100℃ for 10 h. 

Preparation of MgH2-VTiFe and MgH2-VTiFe-CNTs composites

The as-synthesized VTiFe alloy catalyst with various loading ratios (x = 2, 6, 10, 

and 25 wt%) was mixed with commercial MgH2 (98%, Shanghai Magnesium Power 

Technology Co., Ltd) by mechanical milling for 12 h under Ar atmosphere. The final 

prepared composite is defined as MgH2-x wt% VTiFe. The ball-to-powder weight ratio 

was 30:1 and the milling speed was 400 rpm. The ball milling was performed in an 

alternating forward and reverse mode for 10 min each, with a 10 min pause between 

each milling period to prevent excessive temperature rise in the powder. Under 

unchanged processing conditions, MgH2-6 wt% VTiFe composite material was first 

prepared by ball milling for 8 h. Subsequently, 3 wt.% multi-walled CNTs (3-15 nm 

diameter, Suiheng Technology Co., Ltd) was added and the mixture was further ball 

milled for 4 h to obtain the MgH2-6 wt.% VTiFe-3 wt.% CNTs composite. As a control 

sample, MgH2 without catalysts doping, denoted as milled MgH2, was prepared in the 

same method.

Materials characterization and measurements 

The phase composition of the samples was analyzed by X-ray diffraction (XRD, 

PANalytical X' Pert Powder) with Cu Kα radiation with a scanning rate of 5 ℃/min. The 
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microscopic morphology, microstructure, and elemental distribution of the catalyst 

and composites were investigated using an environmental scanning electron 

microscope (ESEM, Quattro S, FEI), a transmission electron microscope (TEM, Talos 

F200S, FEI) equipped with energy-dispersive X-ray spectroscopy (EDS), and a high-

resolution transmission electron microscope (HRTEM). X-ray photoelectron 

spectroscopy (XPS) was performed on a Thermo SCIENTIFIC ESCALAB Xi+ spectrometer 

with monochromatic Al Kα radiation (E=1486.68 eV) to analyze the chemical states of 

elements in the samples. All binding energies were calibrated with C1s peak (284.8 

eV).

Hydrogen storage performance of the samples was tested by a full-automatic 

Sievert-type ab/desorption instrument (PCTPro, Setaram). Temperature-

programmed-dehydrogenation (TPD) measurements were carried out to investigate 

the dehydrogenation behavior of samples at different heating rates from room 

temperature to 400℃. Isothermal dehydrogenation and hydrogenation were 

performed at 0.01 MPa and 3 MPa initial hydrogen pressure respectively. The 

thermodynamic properties of the samples were analyzed by pressure-composition-

temperature (PCT) measurements. For each performance test, 50 mg of sample 

powder was loaded into the vessel in the argon-filled glove box.



S4

20 30 40 50 60 70 80 90
In

te
ns

ity
 (a

.u
.)

2θ (deg)

 20 h
 25 h
 30 h

  5 h
10 h
15 h(111)

(200)

(220)

(311)

Fig.S1 XRD patterns of VTiFe alloy at different ball milling times.
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Fig.S2 XRD patterns of VTiFe alloy after heating treatment for 3 h at 350℃.
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Fig.S3 (a) SEM images and corresponding EDS elemental mappings results of (b) V, (c) Ti and (d) 

Fe elements of the VTiFe alloy. 
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Fig.S4 EDS mapping results of VTiFe alloy.


