Supporting Information

Effectively Designing Infrared Nonlinear Optical Materials with Magnetism, MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb) Aided by the Stable Open Frameworks

Kaixuan Li^a, Yujie Zhang^a, Xianchao Zhu^{a*}, Hongping Wu^{a*}, Zhanggui Hu^a, Jiyang Wang^a and Yicheng Wu^a ^a Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

CONTENTS

Experimental Section	3
Table S1. Crystal data and structure refinement for MMn ₆ Ga ₆ S ₁₆ (M=Ca, Sr, Ba, Pb).	6
Table S2a. Atoms coordinate, equivalent isotropic displacement parameters, and BVS for CaMn ₆ Ga ₆ S ₁₆	7
Table S2b. Atoms coordinate, equivalent isotropic displacement parameters, and BVS for SrMn ₆ Ga ₆ S ₁₆	8
Table S2c. Atoms coordinate, equivalent isotropic displacement parameters, and BVS for BaMn ₆ Ga ₆ S ₁₆	9
Table S2d. Atoms coordinate, equivalent isotropic displacement parameters, and BVS for PbMn ₆ Ga ₆ S ₁₆	
Table S3a. A(I)B ₃ C ₃ Q ₈ and M(II)B ₆ C ₆ Q ₁₆ structural data and some optical performances.	11
Table S3b. Optical properties of compounds AB ₃ C ₃ S ₈ and MMn ₆ Ga ₆ S ₁₆ .	
Table S4a. Selected bond distances (Å) and angles (deg) for CaMn ₆ Ga ₆ S ₁₆	
Table S4b. Selected bond distances (Å) and angles (deg) for SrMn ₆ Ga ₆ S ₁₆	
Table S4c. Selected bond distances (Å) and angles (deg) for BaMn ₆ Ga ₆ S ₁₆	
Table S4d. Selected bond distances (Å) and angles (deg) for PbMn ₆ Ga ₆ S ₁₆	
Table S5a. Calculated distortion degree of MnS ₆ or MgS ₆ groups	
Table S5b. Calculated distortion degree of GaS4 groups	
Table S6. The diameters of three size of channels in compounds	
Figure S1. Experimental and calculated PXRD of SrMn ₆ Ga ₆ S ₁₆ , BaMn ₆ Ga ₆ S ₁₆ and PbMn ₆ Ga ₆ S ₁₆	
Figure S2. The UV-vis-NIR diffuse reflectance spectra for MMn ₆ Ga ₆ S ₁₆ (M=Ca, Sr, Ba, Pb)	
Figure S3. Birefringence measurement of SrMn ₆ Ga ₆ S ₁₆ , BaMn ₆ Ga ₆ S ₁₆ and PbMn ₆ Ga ₆ S ₁₆	
Figure S4. The arrangement of GaS4 tetrahedra in the structure of MMn ₆ Ga ₆ S ₁₆ (M=Ca, Sr, Ba, Pb)	
Figure S5. The magnetization curve for MMn ₆ Ga ₆ S ₁₆ (M=Ca, Sr, Ba, Pb)	
Figure S6. The arrangement of A-site cations in compounds NaMg3Ga3S8, CaMg6Ga6S16 and CaMn6Ga6S16	40

Experimental Methods

Syntheses

MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb) were synthesized by the conventional solid-state method. The initial reagents including CaS (Aladdin, 99.9%), SrS (Aladdin, 99.5%), BaS (Aladdin, 99 %), PbS (Aladdin, 99.9%), MnS (Aladdin, 99.9%), Ga₂S₃ (Aladdin, 95%) and S (Aladdin, 99%) were used without further purification. Stoichiometric amounts of reactants were mixed thoroughly and heated in the corundum crucibles. The reactants, reaction time, and temperature for all compound are listed below.

 $MMn_6Ga_6S_{16}$ (M=Ca, Sr, Ba, Pb): Ca $Mn_6Ga_6S_{16}$ was synthesized using CaS (0.0273 g), MnS (0.1977 g), Ga₂S₃ (0.2543g), and S (0.0206g). After weighing the raw materials, they were ground evenly, and loaded into a small graphite crucible, and then the crucibles were flame-sealed under a pressure of 10^{-3} Pa in a fused-silica tube. The mixtures were heated from room temperature to 950 C in 15 h, held at that temperature for 40 h, cooled to 900 °C in 50 h, and finally cooled to room temperature in 24 h. Sr $Mn_6Ga_6S_{16}$, Ba $Mn_6Ga_6S_{16}$ and Pb $Mn_6Ga_6S_{16}$ were also successfully synthesized under identical conditions.

Single Crystal X-ray Diffraction

Single-crystal data was collected on a Bruker SMART APEX III 4 K CCD diffractometer using Mo-K α (λ =0.71073 Å) radiation at 293(2) K. The structure of three crystals were solved directly by the SHELXTL crystallographic software package and all atoms were refined by the full-matrix least squares technique. The final structures were examined for the presence of any missing symmetry elements using PLATON, and no additional higher symmetry elements were identified. The crystal data and structure refinement details are listed in Table S1 and the atomic coordination, displacement parameters, bond valence sums (BVSs), and selected bond lengths and angles are summarized in Tables S2

Powder XRD

MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb) were tested using a SmartLab9KW powder X-ray diffractometer. The experimental XRD spectra of the title compounds were measured using X-rays with Cu K α radiation ($\lambda = 1.541$ Å) at room temperature, and the measurement results show that the PXRD patterns of the as-synthesized samples match the calculated ones derived from their single crystal data. The results of refining powder by the Rietveld method are in reasonable ranges, indicating the high purity and crystallinity of the as-prepared samples. The fitted profile matches the experimental data well, giving the acceptance R values of Rp = 0.08 for CaMn₆Ga₆S₁₆,

respectively, with all of the observed Bragg reflections indexed into the space group of P6.

Infrared spectroscopy

The IR spectra of $MMn_6Ga_6S_{16}$ (M=Ca, Sr, Ba, Pb) were recorded on a Nicolet iS50 Fourier transform infrared (FTIR) spectrometer in the range of 600–4000 cm⁻¹. The silicates were ground and mixed with KBr.

UV-vis-NIR diffuse-reflectance spectra

The UV-vis-NIR diffuse reflectance spectra of $MMn_6Ga_6S_{16}$ (M=Ca, Sr, Ba, Pb) were measured at room temperature with a Shimadzu SolidSpec-3700DUV spectrophotometer. The wavelengths of the spectra were in the range 240–2000 nm. Absorption (K/S) data were calculated from the following Kubelka–Munk function: F(R) = $(1-R)^2/2R = K/S$, R represents the reflectance, K the absorption, and S the scattering factor.

Birefringence measurement.

The birefringence was measured using a Nikon Eclipse polarizing microscope E200MV POL with a halogen lamp. According to the formula $R = \Delta n \times d$, where R, Δn , and d represent optical path difference, birefringence, and thickness, respectively. The birefringence was calculated by measuring the optical path compared with the Michel-Levy chart and the thickness with a Bruker SMART APEX II. The transparent MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb) crystal was selected for the measurement to ensure the result's precision.

SHG measurement

The SHG responses were measured based on the Kurtz–Perry method by irradiation of a 2090 nm Q-switched laser (50 ns, 3 Hz) with the AGS as a reference. Further, their effective NLO coefficients d_{eff} were calculated using the formula $d_{eff} = d_{eff}$, AGS $(I^{2\omega}/I^{2\omega}_{AGS})^{1/2}$ $(I^{2\omega}$ and $I^{2\omega}_{AGS}$ are SHG intensities for sample and AGS, respectively) with polycrystalline $d_{eff,AGS} = 11.8 \text{ pm V}^{-1}$ (polycrystalline $d_{eff,AGS}$ is the angular average of single-crystal $d_{36,AGS} = 13.7 \text{ pm V}^{-1}$).

Laser damage threshold measurement.

The LDTs of the MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb) and AGS powder at the particle size range of 180–250 μ m were evaluated under using high-power laser irradiation of 1064 nm (pulse width $\tau_p = 10$ ns) by the single-pulse method. The measurement processes were performed by gradually increasing the laser power until the damaged spot was observed under a microscope. The damage thresholds were derived from the equation $I_{(threshold)}=E/(\pi r^2 \tau_p)$, where Eis the laser energy of a single pulse, r is the spot radius, and τ_p is the pulse width.

Magnetic properties measurement

The temperature dependence of magnetization (M-T) of $MMn_6Ga_6S_{16}$ (M=Ca, Sr, Ba, Pb) powder are investigated after zero-field cooling (ZFC) and field cooling (FC) processes under an applied field of H = 5000 Oe utilizing a physical properties measurement system (PPMS 9 T, Quantum Design).

Empirical formula	CaMn ₆ Ga ₆ S ₁₆	SrMn ₆ Ga ₆ S ₁₆	BaMn ₆ Ga ₆ S ₁₆	PbMn ₆ Ga ₆ S ₁₆			
Formula weight	1301.00	1348.54	1398.26	1468.11			
Temperature		297(2) K				
Crystal system		Hexagonal					
Space group		Р	ō				
Z		3	3				
<i>a</i> (Å)	16.7529(7)	16.8606(5)	16.9985(5)	16.8215(3)			
<i>c</i> (Å)	7.4170(5)	7.4237(3)	7.4406(4)	7.4281(2)			
$V(\text{\AA}^3)$	1802.76(19)	1827.67(13)	1861.91(15)	1820.28			
$D_c (\mathrm{g \ cm^{-3}})$	3.595	3.676	3.741	4.018			
$\mu \text{ (mm}^{-1})$	11.236	13.038	12.226	17.821			
F (000)	1836	1890	1944	2022			
Crystal size (mm ³)	0.258 x 0.135 x 0.105	0.222 x 0.075 x 0.049	0.121 x 0.117 x 0.063	0.258 x 0.135 x 0.105			
Radiation	Mo- K_{α} ($\lambda = 0.71073$)	Mo- K_{α} ($\lambda = 0.71073$)	Mo- K_{α} ($\lambda = 0.71073$)	Mo- K_{α} ($\lambda = 0.71073$)			
2θ range (°)	2.43 to 25.02	2.41 to 25.00	2.39 to 25.02	2.42 to 25.01			
Reflections collected	13489	10981	14168	12016			
Indep. Reflns/ Rint	2300 / 0.0420	2322/0.0401	2375 /0.0423	2275 / 0.0322			
GOOF on F ²	1.064	1.075	1.089	1.093			
$R_{l}, wR_{2} (I > 2\sigma(I))^{a}$	0.0396, 0.1189	0.0295, 0.0798	0.0250, 0.0480	0.0273, 0.0768			
R_1 , wR_2 (all data)	0.0444, 0.1276	0.0367, 0.0852	0.0276, 0.0494	0.0407, 0.0836			
Absolute structure parameter	0.025(10)	0.018(8)	0.022(9)	0.027(1)			
Extinction coefficient	0.0049(6)	0.0028(2)	0.0020(3)	0.0016 (4)			
Largest diff. peak and hole (e.Å ⁻³) ^a $R_1 = \Sigma Fo - Fc / \Sigma Fo $, ^b $wR_2 = \Sigma w$	2.470, -1.552 v(F_o^2 — F_c^2) ² / Σ w(F_o^2) ²] ^{1/2}	3.294, -1.347	0.684, -0.703	2.023, -0.628			

Table S1. Crystallographic Data and Refinement Details for CaMn₆Ga₆S₁₆, SrMn₆Ga₆S₁₆, BaMn₆Ga₆S₁₆ and PbMn₆Ga₆S₁₆.

Atom	BVS ^a	Wyckoff	X	у	Z	U _{eq} (Å)	
Ca(1)	1.6	1b	0	0	5000	26(3)	
Ca(2)	1.55	1f	6667	3333	5000	28(3)	
Ca(3)	1.57	1d	3333	6667	5000	36(3)	
Ga(1)	3.09	61	4479(2)	3012(2)	2481(3)	14(1)	
Ga(2)	2.91	61	244(1)	2205(2)	2486(3)	12(1)	
Ga(3)	3.03	61	3695(2)	4763(2)	2492(2)	12(1)	
Mn(1)	1.91	3ј	1407(3)	4285(4)	0	16(1)	
Mn(2)	1.93	3k	1394(3)	4192(3)	5000	16(1)	
Mn(3)	1.99	3k	6176(4)	5352(3)	5000	17(1)	
Mn(4)	1.94	3j	6236(4)	5330(3)	0	18(1)	
Mn(5)	2.03	3k	-1990(4)	359(3)	0	17(1)	
Mn(6)	2.08	3k	-2006(4)	446(3)	5000	18(1)	
S (1)	2.01	3j	717(5)	5375(5)	0	11(2)	
S(2)	1.88	3k	1199(6)	2536(6)	5000	11(2)	
S(3)	1.87	3k	4113(5)	2072(5)	5000	13(1)	
S(4)	1.97	3k	4602(5)	5391(6)	5000	12(2)	
S(5)	1.91	3j	4048(5)	2050(5)	0	13(2)	
S(6)	1.97	61	-858(4)	729(4)	2543(6)	12(1)	
S(7)	2.14	61	3235(4)	3235(4)	2498(7)	13(1)	
S(8)	1.92	61	5913(4)	4176(4)	2540(6)	15(1)	
S(9)	1.96	3ј	1214(6)	2604(7)	0	12(2)	
S(10)	1.93	61	2549(4)	5074(4)	2538(6)	14(1)	
S(11) ^a Bond valend associated with	S(11) 1.86 6l 39(4) 3449(5) 2505(6) 14(2) ^a Bond valence state was calculated using the empirical formula $V_i=\Sigma S_{ij}=\Sigma \exp[(r_0-r_{ij})/0.37]$, where S_{ij} is the bond valence associated with bond lengths r_{ii} and r_{0} .						

Table S2a. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for CaMn₆Ga₆S₁₆. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor

Atom	BVS ^a	Wyckoff	Х	у	Z	U _{eq} (Å)	
Sr(1)	1.78	1e	6667	3333	10000	22(1)	
Sr(2)	1.84	1a	0	0	10000	24(1)	
Sr(3)	1.82	1c	3333	6667	10000	20(1)	
Ga(1)	2.93	61	5536(1)	6902(1)	7475(2)	10(1)	
Ga(2)	2.97	61	2271(1)	1903(1)	7485(2)	10(1)	
Ga(3)	2.92	61	4794(1)	3643(1)	7467(2)	11(1)	
Mn(1)	2.04	3ј	3797(2)	4647(2)	10000	16(1)	
Mn(2)	2.07	3k	3698(2)	4650(2)	5000	15(1)	
Mn(3)	1.98	3ј	4134(2)	1298(2)	10000	15(1)	
Mn(4)	1.90	3ј	561(2)	2501(2)	10000	14(1)	
Mn(5)	1.98	3k	4220(2)	1312(2)	5000	13(1)	
Mn(6)	1.93	3k	475(2)	2412(2)	5000	14(1)	
S(1)	1.89	61	6774(3)	6709(2)	7505(7)	11(1)	
S(2)	2.12	61	3336(2)	3427(2)	7505(7)	10(1)	
S(3)	1.90	3k	5345(4)	4602(3)	5000	11(1)	
S(4)	1.80	3ј	5390(4)	4570(4)	10000	12(1)	
S(5)	2.03	61	4086(3)	5775(3)	7510(5)	12(1)	
S(6)	1.96	61	5012(3)	2449(3)	7521(5)	12(1)	
S(7)	1.90	3ј	2508(4)	1245(4)	10000	11(1)	
S(8)	1.97	3k	2599(4)	1306(4)	5000	11(1)	
S(9)	1.82	3ј	5827(4)	7837(4)	10000	11(1)	
S(10)	1.95	3k	5909(4)	7865(4)	5000	11(1)	
S(11) ^a Bond valence associated wi	S(11) 1.89 6l 835(3) 1645(3) 7517(4) 12(1) ^a Bond valence state was calculated using the empirical formula $V_i = \Sigma S_{ij} = \Sigma \exp[(r_0 - r_{ij})/0.37]$, where S_{ij} is the bond valence associated with bond lengths r_{ij} and r_0 .						

Table S2b. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for SrMn₆Ga₆S₁₆. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor

Atom	BVS ^a	Wyckoff	X	у	Z	U _{eq} (Å)	
Ba(1)	2.15	1d	3333	6667	5000	18(1)	
Ba(2)	2.11	1e	6667	3333	0	16(1)	
Ba(3)	2.21	1a	0	0	0	13(1)	
Ga(1)	2.90	61	4485(1)	3032(1)	2521(2)	13(1)	
Ga(2)	2.95	61	3705(1)	4758(1)	2492(2)	12(1)	
Ga(3)	2.95	61	223(1)	2203(1)	2504(2)	12(1)	
Mn(1)	1.99	3ј	6160(2)	5369(2)	0	12(1)	
Mn(2)	1.95	3k	1393(2)	4164(2)	5000	14(1)	
Mn(3)	1.91	3j	1378(2)	4201(2)	0	22(1)	
Mn(4)	1.98	3k	4615(2)	857(2)	5000	21(1)	
Mn(5)	2.03	3j	-2049(2)	450(2)	0	23(1)	
Mn(6)	2.07	3k	2414(2)	2034(2)	5000	17(1)	
S (1)	1.77	3j	4185(3)	2120(5)	0	12(1)	
S(2)	2.07	61	5863(3)	4255(2)	2516(3)	13(1)	
S(3)	1.83	3k	4114(3)	2084(5)	5000	14(1)	
S(4)	2.14	61	3252(2)	3244(2)	2497(10)	12(1)	
S(5)	1.79	3k	4596(6)	5433(6)	5000	14(1)	
S(6)	1.90	61	46(2)	3435(2)	2496(10)	12(1)	
S(7)	2.09	61	2494(3)	4945(3)	2488(3)	15(1)	
S(8)	1.97	3ј	778(3)	5392(6)	0	12(1)	
S(9)	1.94	3k	1162(4)	2528(3)	5000	13(1)	
S(10)	1.77	3j	1146(4)	2483(3)	0	12(1)	
S(11) ^a Bond valent associated w	S(11) 2.14 6l -935(2) 784(3) 2494(3) 14(1) ^a Bond valence state was calculated using the empirical formula $V_i = \Sigma S_{ij} = \Sigma exp[(r_0 - r_{ij})/0.37]$, where S_{ij} is the bond valence associated with bond lengths r_{ij} and r_{0} .						

Table S2c. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for BaMn₆Ga₆S₁₆. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor

Atom	BVS ^a	Wyckoff	Х	у	Z	$U_{eq}(\text{\AA})$
Pb(1)	1.59	1c	3333	6667	10000	27(1)
Pb(2)	1.66	1a	0	0	10000	29(1)
Pb(3)	1.68	1e	6667	3333	0	26(1)
Ga(1)	2.97	61	376(1)	2276(1)	7501(4)	13(1)
Ga(2)	2.93	61	1148(1)	4798(1)	7503(4)	14(1)
Ga(3)	2.95	61	4465(1)	3089(1)	2499(3)	13(1)
Mn(1)	1.92	3ј	-1949(3)	502(3)	10000	20(1)
Mn(2)	1.96	3k	-1947(3)	512(3)	5000	19(1)
Mn(3)	2.03	3k	2872(3)	4170(3)	5000	18(1)
Mn(4)	1.97	3ј	2886(3)	4188(3)	10000	18(1)
Mn(5)	2.02	3k	6255(3)	5359(3)	5000	21(1)
Mn(6)	2.12	3ј	6274(3)	5361(3)	0	20(1)
S(1)	1.93	61	-808(2)	831(2)	7496(9)	16(1)
S(2)	1.97	3ј	1291(5)	2574(5)	10000	16(2)
S(3)	1.98	3k	1283(5)	2556(5)	5000	14(2)
S(4)	2.16	61	-92(2)	3335(2)	7533(5)	13(1)
S(5)	1.88	3k	785(6)	5370(5)	5000	17(2)
S(6)	1.87	3ј	762(6)	5362(5)	10000	14(2)
S(7)	1.94	61	2565(2)	5018(2)	7489(8)	16(1)
S(8)	1.91	61	3230(2)	3292(2)	2532(5)	14(1)
S(9)	1.92	3k	4127(5)	2144(5)	5000	14(2)
S(10)	1.98	3j	4117(5)	2144(5)	0	16(2)
S(11) ^a Bond valence associated wi	1.94 e state was calculate th bond lengths r _{ij} and	$6l$ d using the empirities $r_{0_{\circ}}$	5919(2) rical formula V _i =ΣS	4223(2) $S_{ij}=\sum exp[(r_0-r_{ij})/0]$	2493(8) 0.37], where S _{ij} is	16(1) the bond valence

Table S2d. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for PbMn₆Ga₆S₁₆. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor

	cell parameters	SHG	Eg	Δn	Curie constant / Weiss constant
Compound	(Å)	(×AGS)	(eV)	@1064nm	(emu K mol ⁻¹ /K)
NaMg3Ga3S8	a=b=16.7467 c=3.7032	0.3	3.70	0.03@546nm	/
LiMg3Ga3S8	a=b=16.6837 c=3.7004	/	3.86	/	/
NaMg3Al3S8	a=b=16.7100 c=3.6921	0.4	4.20	0.02@546nm	
AgMg3Ga3S8	a=b=16.8433 c=3.7066	0.3	3.59	0.091@546nm	/
CuMg ₃ Ga ₃ S ₈	a=b=16.6442 c=3.6963	/	/	/	/
AgMg3Ga3Se8	a=b=17.6600 c=3.8930	/	/	0.17@546nm	/
LiMg3Ga3Se8	a=b=17.4769 c=3.8678	/	2.67	/	/
NaMg3Ga3Se8	a=b=17.5765 c=3.8811	0.8	2.77	0.079@546nm	
NaMg3Al3Se8	a=b=17.5753 c=3.8769	/	/	/	/
U					
NaMn3Ga3S8	a=b=16.7891 c=3.7083	1.6	2.50	0.175@2050nm	/
CaMg6Ga6S16	a=b=16.7006 c=7.3916	0.7	3.54	0.046	1
SrMg6Ga6S16	a=b=16.8029 c=7.4102	0.8	3.51	0.042	/
BaMg6Ga6S16	a=b=16.9301 c=7.4225	0.8	3.50	0.041	/
241120 240010			••••		
CaMg6Ga6Se16	a=b=17.5327 c=7.7603	1.6	2.71	0.052	/
SrMg6Ga6Se16	a=b=17.6115 c=7.7684	1.0	2.71	0.048	1
2 g , e					
BaMg6Ga6Se16	a=b=17.7326 c=7.7899	1.1	2.69	0.044	/
LaMg6Ga6S16	a=b=16.7006 c=7.3916	0.8	3.00	0.041	/
CaMn6Ga6S16	a=b=16.7529 c=7.4170	0.4	2.58	0.045	C=4.73 θ =-130.71
SaMa Co S	a-b-16 8606 a-7 4227	0.5	2 40	0.047	C-2.07 0
5111116G86316	a=0=10.0000 (=/.423/	0.5	2.40	U.U4 0	C = 3.97 0 = -123.03
BaMn6Ga6S16	a=b=16.9986 c=7.4410	0.5	2.55	0.060	C=3.96 θ =-114.09
PbMn6Ga6S16	a=b=16.8215 c=7.4281	0.7	2.05	0.049	C=4.18 θ =-134.54

Table S3a. $A(I)B_3CQ_8$ and $M(II)B_6C_6Q_{16}$ structural data and some optical performances (the red part represents the title compounds).

Compounds	SHG (×AGS)	Eg (eV)	Δn @1064nm
NaMg3Ga3S8	0.3	3.70	0.03@546nm
LiMg ₃ Ga ₃ S ₈	1	3.86	1
NaMg ₃ Al ₃ S ₈	0.4	4.20	0.02@546nm
AgMg ₃ Ga ₃ S ₈	0.3	3.59	0.091@546nm
CuMg ₃ Ga ₃ S ₈	/	/	/
CaMn ₆ Ga ₆ S ₁₆	0.4	2.58	0.045
SrMn ₆ Ga ₆ S ₁₆	0.5	2.40	0.046
BaMn ₆ Ga ₆ S ₁₆	0.5	2.55	0.060
PbMn ₆ Ga ₆ S ₁₆	0.7	2.05	0.049

Table S3b. Optical properties of compounds $AB_3C_3S_8$ and $MMn_6Ga_6S_{16}$.

Table S4a. Selected distances (Å) and angles (degrees) for $CaMn_6Ga_6S_{16}$.

Ca(1)-S(6)#11	2.938(6)	Mn(1)-S(10)	2.534(6)
Ca(1)-S(6) [#] 8	2.938(6)	Mn(1)-S(10)#2	2.534(6)
Ca(1)-S(6)#3	2.938(6)	Mn(1)-S(1)	2.604(8)
Ca(1)-S(6)#10	2.938(6)	Mn(1)-S(9)	2.669(10)
Ca(1)-S(6)#12	2.938(6)	Mn(1)-S(11) [#] 2	2.730(6)
Ca(1)-S(6)	2.939(6)	Mn(1)-S(11)	2.730(6)
Ca(2)-S(8)	2.950(6)	Mn(2)-S(10)#3	2.530(6)
Ca(2)-S(8)#13	2.950(6)	Mn(2)-S(10)	2.530(6)
Ca(2)-S(8)#14	2.950(6)	Mn(2)-S(2)	2.626(10)
Ca(2)-S(8)#6	2.950(6)	Mn(2)-S(4)#4	2.675(9)
Ca(2)-S(8)#15	2.950(6)	Mn(2)-S(11)#3	2.703(6)
Ca(2)-S(8)#3	2.950(6)	Mn(2)-S(11)	2.703(6)
Ca(3)-S(10)#5	2.945(5)	Mn(3)-S(8)#3	2.556(6)
Ca(3)-S(10)#3	2.945(5)	Mn(3)-S(8)	2.556(6)
Ca(3)-S(10)#1	2.945(5)	Mn(3)-S(11) [#] 5	2.612(6)
Ca(3)-S(10)	2.945(5)	Mn(3)-S(11)#1	2.612(6)
Ca(3)-S(10)#16	2.945(5)	Mn(3)-S(3)#6	2.655(8)
Ca(3)-S(10)#4	2.945(5)	Mn(3)-S(4)	2.670(9)
Ga(1)-S(8)	2.212(7)	Mn(4)-S(8)#2	2.556(6)
Ga(1)-S(7)	2.293(5)	Mn(4)-S(8)	2.556(6)
Ga(1)-S(5)	2.312(5)	Mn(4)-S(5) [#] 6	2.598(8)
Ga(1)-S(3)	2.320(5)	Mn(4)-S(11) [#] 1	2.659(6)
Ga(2)-S(6)	2.227(6)	Mn(4)-S(11) [#] 7	2.659(6)
Ga(2)-S(11)	2.275(6)	$Mn(4)-S(1)^{\#}1$	2.709(9)
Ga(2)-S(9)	2.324(5)	Mn(5)-S(6)	2.523(6)
Ga(2)-S(2)	2.336(5)	$Mn(5)-S(6)^{\#}2$	2.523(6)
Ga(3)-S(10)	2.226(7)	Mn(5)-S(9) [#] 8	2.576(7)
Ga(3)-S(7)	2.275(6)	Mn(5)-S(7) [#] 9	2.624(6)
Ga(3)-S(1) [#] 1	2.297(5)	Mn(5)-S(7) [#] 8	2.624(6)
Ga(3)-S(4)	2.297(5)	Mn(5)-S(5) [#] 8	2.797(9)
S(8)-Ga(1)-S(7)	122.1(2)	Mn(6)-S(6)	2.516(7)
S(8)-Ga(1)-S(5)	117.0(2)	Mn(6)-S(6)#3	2.516(7)
S(7)-Ga(1)-S(5)	97.2(2)	Mn(6)-S(7) [#] 8	2.588(6)
S(8)-Ga(1)-S(3)	112.6(2)	Mn(6)-S(7) [#] 10	2.588(6)
S(7)-Ga(1)-S(3)	98.8(2)	Mn(6)-S(2) [#] 8	2.657(8)
S(5)-Ga(1)-S(3)	106.4(3)	Mn(6)-S(3) [#] 8	2.730(9)
S(6)-Ga(2)-S(11)	126.6(3)	S(2)-Mn(2)-S(11)	83.2(2)

S(6)-Ga(2)-S(9)	114.0(3)	S(4)#4-Mn(2)-S(11)	78.4(2)
S(11)-Ga(2)-S(9)	98.4(3)	S(11) [#] 3-Mn(2)-S(11)	86.4(3)
S(6)-Ga(2)-S(2)	109.7(3)	S(10) [#] 3-Mn(2)-Ca(3)	51.13(15)
S(11)-Ga(2)-S(2)	100.2(3)	S(10)-Mn(2)-Ca(3)	51.13(15)
S(9)-Ga(2)-S(2)	105.5(3)	S(2)-Mn(2)-Ca(3)	138.1(2)
S(10)-Ga(3)-S(7)	114.6(2)	S(4) [#] 4-Mn(2)-Ca(3)	67.29(19)
S(10)-Ga(3)-S(1)#1	113.3(2)	S(11) [#] 3-Mn(2)-Ca(3)	124.68(18)
S(7)-Ga(3)-S(1)#1	104.7(2)	S(11)-Mn(2)-Ca(3)	124.68(18)
S(10)-Ga(3)-S(4)	109.3(2)	S(8) [#] 3-Mn(3)-S(8)	91.1(3)
S(7)-Ga(3)-S(4)	106.8(2)	S(8) [#] 3-Mn(3)-S(11) [#] 5	89.22(16)
S(1) [#] 1-Ga(3)-S(4)	107.7(3)	S(8)-Mn(3)-S(11) [#] 5	176.5(3)
S(10)-Mn(1)-S(10) [#] 2	95.9(3)	S(8) [#] 3-Mn(3)-S(11) [#] 1	176.5(3)
S(10)-Mn(1)-S(1)	96.8(2)	S(8)-Mn(3)-S(11) [#] 1	89.22(16)
S(10) [#] 2-Mn(1)-S(1)	96.8(2)	S(11) [#] 5-Mn(3)-S(11) [#] 1	90.2(3)
S(10)-Mn(1)-S(9)	102.2(2)	S(8)#3-Mn(3)-S(3)#6	89.5(3)
S(10) [#] 2-Mn(1)-S(9)	102.2(2)	S(8)-Mn(3)-S(3)#6	89.5(3)
S(1)-Mn(1)-S(9)	151.3(3)	S(11) [#] 5-Mn(3)-S(3) [#] 6	87.05(19)
S(10)-Mn(1)-S(11)#2	173.8(2)	S(11) [#] 1-Mn(3)-S(3) [#] 6	87.05(19)
S(10)#2-Mn(1)-S(11)#2	89.04(18)	S(8)#3-Mn(3)-S(4)	103.1(3)
S(1)-Mn(1)-S(11)#2	78.85(19)	S(8)-Mn(3)-S(4)	103.1(3)
S(9)-Mn(1)-S(11)#2	80.2(2)	S(11) [#] 5-Mn(3)-S(4)	80.1(2)
S(10)-Mn(1)-S(11)	89.05(18)	S(11) [#] 1-Mn(3)-S(4)	80.1(2)
S(10) [#] 2-Mn(1)-S(11)	173.8(2)	S(3)#6-Mn(3)-S(4)	161.8(3)
S(1)-Mn(1)-S(11)	78.85(19)	S(8) [#] 2-Mn(4)-S(8)	95.0(3)
S(9)-Mn(1)-S(11)	80.2(2)	S(8)#2-Mn(4)-S(5)#6	94.1(3)
S(11) [#] 2-Mn(1)-S(11)	85.7(3)	S(8)-Mn(4)-S(5)#6	94.1(3)
S(10)#3-Mn(2)-S(10)	92.4(3)	S(8) [#] 2-Mn(4)-S(11) [#] 1	176.6(3)
S(10)#3-Mn(2)-S(2)	105.8(2)	S(8)-Mn(4)-S(11)#1	88.18(16)
S(10)-Mn(2)-S(2)	105.8(2)	S(5)#6-Mn(4)-S(11)#1	87.00(19)
S(10)#3-Mn(2)-S(4)#4	91.5(2)	S(8) [#] 2-Mn(4)-S(11) [#] 7	88.18(16)
S(10)-Mn(2)-S(4)#4	91.5(2)	S(8)-Mn(4)-S(11)#7	176.6(3)
S(2)-Mn(2)-S(4)#4	154.6(3)	S(5)#6-Mn(4)-S(11)#7	87.00(19)
S(10) [#] 3-Mn(2)-S(11) [#] 3	89.75(18)	S(11)#1-Mn(4)-S(11)#7	88.6(3)
S(10)-Mn(2)-S(11)#3	169.8(2)	S(8) [#] 2-Mn(4)-S(1) [#] 1	99.8(3)
S(2)-Mn(2)-S(11)#3	83.2(2)	S(8)-Mn(4)-S(1)#1	99.8(3)
S(4)#4-Mn(2)-S(11)#3	78.4(2)	S(5)#6-Mn(4)-S(1)#1	159.3(3)
S(10) [#] 3-Mn(2)-S(11)	169.8(2)	S(11) [#] 1-Mn(4)-S(1) [#] 1	78.3(2)
S(10)-Mn(2)-S(11)	89.76(18)	$S(11)^{\#}7-Mn(4)-S(1)^{\#}1$	78.3(2)

S(6)-Mn(5)-S(6)#2	96.8(3)	S(6)#3-Ca(1)-S(6)#12	133.81(7)
S(6)-Mn(5)-S(9)#8	95.9(2)	S(6)#10-Ca(1)-S(6)#12	133.81(7)
S(6)#2-Mn(5)-S(9)#8	95.9(2)	S(6) [#] 11-Ca(1)-S(6)	133.81(7)
S(6)-Mn(5)-S(7) [#] 9	176.2(2)	S(6) [#] 8-Ca(1)-S(6)	85.60(15)
S(6) [#] 2-Mn(5)-S(7) [#] 9	86.67(18)	S(6) [#] 3-Ca(1)-S(6)	76.6(2)
S(9) [#] 8-Mn(5)-S(7) [#] 9	85.4(2)	S(6) [#] 10-Ca(1)-S(6)	133.81(7)
S(6)-Mn(5)-S(7) [#] 8	86.67(18)	S(6) [#] 12-Ca(1)-S(6)	85.60(15)
S(6) [#] 2-Mn(5)-S(7) [#] 8	176.2(2)	S(8)-Ca(2)-S(8)#13	133.74(7)
S(9) [#] 8-Mn(5)-S(7) [#] 8	85.4(2)	S(8)-Ca(2)-S(8)#14	85.76(15)
S(7) [#] 9-Mn(5)-S(7) [#] 8	89.8(3)	S(8) [#] 13-Ca(2)-S(8) [#] 14	133.74(7)
S(6)-Mn(5)-S(5)#8	98.6(2)	S(8)-Ca(2)-S(8)#6	85.76(15)
S(6)#2-Mn(5)-S(5)#8	98.6(2)	S(8) [#] 13-Ca(2)-S(8) [#] 6	76.4(2)
S(9) [#] 8-Mn(5)-S(5) [#] 8	158.0(4)	S(8)#14-Ca(2)-S(8)#6	85.76(15)
S(7) [#] 9-Mn(5)-S(5) [#] 8	79.11(19)	S(8)-Ca(2)-S(8)#15	133.74(7)
S(7)#8-Mn(5)-S(5)#8	79.11(19)	S(8)#13-Ca(2)-S(8)#15	85.76(15)
S(6)-Mn(6)-S(6)#3	92.8(3)	S(8)#14-Ca(2)-S(8)#15	76.4(2)
S(6)-Mn(6)-S(7)#8	87.57(18)	S(8)#6-Ca(2)-S(8)#15	133.74(7)
S(6)#3-Mn(6)-S(7)#8	174.9(3)	S(8)-Ca(2)-S(8)#3	76.4(2)
S(6)-Mn(6)-S(7)#10	174.9(3)	S(8)#13-Ca(2)-S(8)#3	85.76(15)
S(6)#3-Mn(6)-S(7)#10	87.57(18)	S(8)#14-Ca(2)-S(8)#3	133.74(7)
S(7)#8-Mn(6)-S(7)#10	91.6(3)	S(8)#6-Ca(2)-S(8)#3	133.74(7)
S(6)-Mn(6)-S(2)#8	90.4(2)	S(8)#15-Ca(2)-S(8)#3	85.76(15)
S(6)#3-Mn(6)-S(2)#8	90.4(2)	S(10)#5-Ca(3)-S(10)#3	85.61(14)
S(7)#8-Mn(6)-S(2)#8	84.6(2)	S(10)#5-Ca(3)-S(10)#1	76.6(2)
S(7)#10-Mn(6)-S(2)#8	84.6(2)	S(10)#3-Ca(3)-S(10)#1	133.81(7)
S(6)-Mn(6)-S(3)#8	102.5(2)	S(10)#5-Ca(3)-S(10)	133.81(7)
S(6)#3-Mn(6)-S(3)#8	102.5(2)	S(10)#3-Ca(3)-S(10)	76.6(2)
S(7)#8-Mn(6)-S(3)#8	82.3(2)	S(10)#1-Ca(3)-S(10)	85.61(14)
S(7)#10-Mn(6)-S(3)#8	82.3(2)	S(10)#5-Ca(3)-S(10)#16	85.61(14)
S(2)#8-Mn(6)-S(3)#8	161.2(4)	S(10)#3-Ca(3)-S(10)#16	85.61(14)
S(6)#11-Ca(1)-S(6)#8	133.81(7)	S(10)#1-Ca(3)-S(10)#16	133.80(7)
S(6)#11-Ca(1)-S(6)#3	85.60(15)	S(10)-Ca(3)-S(10)#16	133.80(7)
S(6)#8-Ca(1)-S(6)#3	133.81(7)	S(10)#5-Ca(3)-S(10)#4	133.80(7)
S(6)#11-Ca(1)-S(6)#10	85.60(15)	S(10)#3-Ca(3)-S(10)#4	133.80(7)
S(6) [#] 8-Ca(1)-S(6) [#] 10	76.6(2)	S(10)#1-Ca(3)-S(10)#4	85.61(14)
S(6) [#] 3-Ca(1)-S(6) [#] 10	85.60(15)	S(10)-Ca(3)-S(10)#4	85.61(14)
S(6)#11-Ca(1)-S(6)#12	76.6(2)	S(10)#16-Ca(3)-S(10)#4	76.6(2)
S(6)#8-Ca(1)-S(6)#12	85.60(15)		

#1 -y+1,x-y+1,z #2 x,y,-z #3 x,y,-z+1 #4 -x+y,-x+1,z
#5 -y+1,x-y+1,-z+1 #6 -x+y+1,-x+1,z #7 -y+1,x-y+1,-z
#8 -y,x-y,z #9 -y,x-y,-z #10 -y,x-y,-z+1
#11 -x+y,-x,-z+1 #12 -x+y,-x,z #13 -x+y+1,-x+1,-z+1
#14 -y+1,x-y,z #15 -y+1,x-y,-z+1 #16 -x+y,-x+1,-z+1
#17 -x+y,-x+1,-z

Table S4b. Selected distances (Å) and angles (degrees) for SrMn6Ga6S16.

Sr(1)-S(6) [#] 1	3.039(4)	Ga(3)-S(3)	2.308(4)
Sr(1)-S(6)#2	3.039(4)	Ga(3)-S(4)	2.327(4)
Sr(1)-S(6)	3.039(4)	Mn(1)-S(5)#4	2.518(5)
Sr(1)-S(6)#3	3.039(4)	Mn(1)-S(5)	2.518(5)
Sr(1)-S(6)#4	3.039(4)	Mn(1)-S(2)#4	2.582(5)
Sr(1)-S(6)#5	3.039(4)	Mn(1)-S(2)	2.582(5)
Sr(1)-S(4) [#] 2	3.669(6)	Mn(1)-S(9)#10	2.703(6)
Sr(1)-S(4)#5	3.669(6)	Mn(1)-S(4)	2.755(7)
Sr(1)-S(4)	3.669(6)	Mn(2)-S(5)#14	2.501(4)
Sr(2)-S(11)	3.028(4)	Mn(2)-S(5)	2.501(4)
Sr(2)-S(11) [#] 4	3.028(4)	Mn(2)-S(10)#10	2.598(6)
Sr(2)-S(11) [#] 6	3.028(4)	Mn(2)-S(2)	2.611(5)
Sr(2)-S(11) [#] 7	3.028(4)	Mn(2)-S(2)#14	2.611(5)
Sr(2)-S(11) [#] 8	3.028(4)	Mn(2)-S(3)	2.818(7)
Sr(2)-S(11) [#] 9	3.028(4)	Mn(3)-S(6)#4	2.544(4)
Sr(2)-S(7)	3.662(5)	Mn(3)-S(6)	2.544(4)
Sr(2)-S(7)#8	3.662(5)	Mn(3)-S(1) [#] 2	2.611(5)
Sr(2)-S(7)#6	3.662(5)	Mn(3)-S(1)#1	2.611(5)
Sr(3)-S(5)	3.032(4)	Mn(3)-S(4) [#] 2	2.679(6)
Sr(3)-S(5)#10	3.032(4)	Mn(3)-S(7)	2.699(6)
Sr(3)-S(5) [#] 11	3.032(4)	Mn(4)-S(11)	2.522(4)
Sr(3)-S(5) [#] 12	3.032(4)	Mn(4)-S(11) [#] 4	2.522(4)
Sr(3)-S(5) [#] 13	3.032(4)	Mn(4)-S(9) [#] 10	2.651(6)
Sr(3)-S(5) [#] 4	3.032(4)	Mn(4)-S(7) [#] 6	2.697(6)
Sr(3)-S(9)	3.644(5)	Mn(4)-S(1) [#] 12	2.707(5)
Sr(3)-S(9) [#] 13	3.644(5)	Mn(4)-S(1) [#] 10	2.707(5)
Sr(3)-S(9) [#] 10	3.644(5)	Mn(5)-S(6) [#] 14	2.531(4)
Ga(1)-S(5)	2.224(4)	Mn(5)-S(6)	2.531(4)
Ga(1)-S(1)	2.269(4)	$Mn(5)-S(3)^{\#}2$	2.602(6)
Ga(1)-S(10)	2.321(4)	Mn(5)-S(1) [#] 15	2.653(5)
Ga(1)-S(9)	2.338(3)	$Mn(5)-S(1)^{\#}2$	2.653(5)
Ga(2)-S(11)	2.235(4)	Mn(5)-S(8)	2.728(6)
Ga(2)-S(2)	2.284(4)	Mn(6)-S(11)	2.514(4)
Ga(2)-S(8)	2.298(3)	Mn(6)-S(11)#14	2.514(4)
Ga(2)-S(7)	2.306(3)	Mn(6)-S(8)#6	2.628(6)
Ga(3)-S(6)	2.219(4)	Mn(6)-S(10)#10	2.680(6)
Ga(3)-S(2)	2.299(3)	Mn(6)-S(1)#10	2.723(5)

Mn(6)-S(1)#16	2.723(5)	S(11)-Sr(2)-S(11) [#] 6	86.80(10)
S(6) [#] 1-Sr(1)-S(6) [#] 2	74.55(14)	S(11) [#] 4-Sr(2)-S(11) [#] 6	133.26(5)
$S(6)^{\#}1-Sr(1)-S(6)$	133.11(5)	S(11)-Sr(2)-S(11) [#] 7	133.26(5)
$S(6)^{#}2-Sr(1)-S(6)$	87.12(10)	S(11) [#] 4-Sr(2)-S(11) [#] 7	86.80(10)
S(6) [#] 1-Sr(1)-S(6) [#] 3	87.12(10)	S(11) [#] 6-Sr(2)-S(11) [#] 7	133.26(5)
$S(6)^{#}2-Sr(1)-S(6)^{#}3$	133.11(5)	S(11)-Sr(2)-S(11) [#] 8	86.80(10)
$S(6)-Sr(1)-S(6)^{\#}3$	133.11(5)	S(11) [#] 4-Sr(2)-S(11) [#] 8	133.26(5)
S(6) [#] 1-Sr(1)-S(6) [#] 4	87.12(10)	S(11) [#] 6-Sr(2)-S(11) [#] 8	86.80(10)
S(6) [#] 2-Sr(1)-S(6) [#] 4	133.11(5)	S(11) [#] 7-Sr(2)-S(11) [#] 8	75.00(14)
S(6)-Sr(1)-S(6) [#] 4	74.55(14)	S(11)-Sr(2)-S(11) [#] 9	133.26(5)
S(6) [#] 3-Sr(1)-S(6) [#] 4	87.12(10)	S(11) [#] 4-Sr(2)-S(11) [#] 9	86.80(10)
S(6) [#] 1-Sr(1)-S(6) [#] 5	133.11(5)	S(11) [#] 6-Sr(2)-S(11) [#] 9	75.00(14)
S(6) [#] 2-Sr(1)-S(6) [#] 5	87.12(10)	S(11) [#] 7-Sr(2)-S(11) [#] 9	86.80(10)
S(6)-Sr(1)-S(6)#5	87.12(10)	S(11)#8-Sr(2)-S(11)#9	133.26(5)
S(6)#3-Sr(1)-S(6)#5	74.55(14)	S(11)-Sr(2)-S(7)	66.42(10)
S(6)#4-Sr(1)-S(6)#5	133.11(5)	S(11) [#] 4-Sr(2)-S(7)	66.42(10)
S(6)#1-Sr(1)-S(4)#2	67.87(9)	S(11) [#] 6-Sr(2)-S(7)	142.50(7)
S(6) [#] 2-Sr(1)-S(4) [#] 2	67.87(9)	S(11) [#] 7-Sr(2)-S(7)	66.84(10)
S(6)-Sr(1)-S(4) [#] 2	65.26(9)	S(11) [#] 8-Sr(2)-S(7)	66.84(10)
S(6) [#] 3-Sr(1)-S(4) [#] 2	142.69(7)	S(11) [#] 9-Sr(2)-S(7)	142.50(7)
S(6) [#] 4-Sr(1)-S(4) [#] 2	65.26(9)	S(11)-Sr(2)-S(7)#8	142.50(7)
S(6)#5-Sr(1)-S(4)#2	142.69(7)	S(11) [#] 4-Sr(2)-S(7) [#] 8	142.50(7)
S(6) [#] 1-Sr(1)-S(4) [#] 5	65.26(9)	S(11) [#] 6-Sr(2)-S(7) [#] 8	66.84(10)
$S(6)^{#2}-Sr(1)-S(4)^{#5}$	65.26(10)	S(11) [#] 7-Sr(2)-S(7) [#] 8	66.42(10)
$S(6)-Sr(1)-S(4)^{\#}5$	142.69(7)	S(11) [#] 8-Sr(2)-S(7) [#] 8	66.42(10)
$S(6)^{#}3-Sr(1)-S(4)^{#}5$	67.86(9)	S(11) [#] 9-Sr(2)-S(7) [#] 8	66.84(10)
$S(6)^{#}4-Sr(1)-S(4)^{#}5$	142.69(7)	S(7)-Sr(2)-S(7) [#] 8	120
$S(6)^{\#}5-Sr(1)-S(4)^{\#}5$	67.86(9)	S(11)-Sr(2)-S(7)#6	66.84(10)
$S(4)^{#2}-Sr(1)-S(4)^{#5}$	120	S(11) [#] 4-Sr(2)-S(7) [#] 6	66.84(10)
$S(6)^{\#}1-Sr(1)-S(4)$	142.69(7)	S(11) [#] 6-Sr(2)-S(7) [#] 6	66.42(10)
$S(6)^{#2}-Sr(1)-S(4)$	142.69(7)	S(11) [#] 7-Sr(2)-S(7) [#] 6	142.50(7)
S(6)-Sr(1)-S(4)	67.86(9)	S(11) [#] 8-Sr(2)-S(7) [#] 6	142.50(7)
$S(6)^{\#}3-Sr(1)-S(4)$	65.26(9)	S(11) [#] 9-Sr(2)-S(7) [#] 6	66.42(10)
$S(6)^{#}4-Sr(1)-S(4)$	67.86(9)	$S(7)-Sr(2)-S(7)^{\#}6$	120.000(1)
S(6) [#] 5-Sr(1)-S(4)	65.26(9)	S(7) [#] 8-Sr(2)-S(7) [#] 6	120.000(1)
$S(4)^{#2}-Sr(1)-S(4)$	119.999(1)	S(5)-Sr(3)-S(5)#10	86.72(11)
S(4) [#] 5-Sr(1)-S(4)	119.999(1)	S(5)-Sr(3)-S(5)#11	133.29(5)
S(11)-Sr(2)-S(11)#4	75.00(14)	S(5) [#] 10-Sr(3)-S(5) [#] 11	133.29(5)

S(5)-Sr(3)-S(5)#12	133.29(5)	S(10)-Ga(1)-S(9)	105.72(17)
S(5) [#] 10-Sr(3)-S(5) [#] 12	75.11(15)	S(11)-Ga(2)-S(2)	112.62(14)
S(5) [#] 11-Sr(3)-S(5) [#] 12	86.72(11)	S(11)-Ga(2)-S(8)	113.44(17)
S(5)-Sr(3)-S(5) [#] 13	86.72(11)	S(2)-Ga(2)-S(8)	105.79(18)
S(5) [#] 10-Sr(3)-S(5) [#] 13	86.72(11)	S(11)-Ga(2)-S(7)	109.23(17)
S(5) [#] 11-Sr(3)-S(5) [#] 13	75.11(15)	S(2)-Ga(2)-S(7)	107.96(19)
S(5) [#] 12-Sr(3)-S(5) [#] 13	133.29(5)	S(8)-Ga(2)-S(7)	107.53(17)
S(5)-Sr(3)-S(5)#4	75.11(15)	S(6)-Ga(3)-S(2)	120.35(15)
S(5) [#] 10-Sr(3)-S(5) [#] 4	133.29(5)	S(6)-Ga(3)-S(3)	117.26(17)
$S(5)^{\#}11-Sr(3)-S(5)^{\#}4$	86.72(11)	S(2)-Ga(3)-S(3)	98.31(19)
S(5) [#] 12-Sr(3)-S(5) [#] 4	86.72(11)	S(6)-Ga(3)-S(4)	112.49(17)
S(5) [#] 13-Sr(3)-S(5) [#] 4	133.29(5)	S(2)-Ga(3)-S(4)	99.51(19)
S(5)-Sr(3)-S(9)	67.24(10)	S(3)-Ga(3)-S(4)	106.47(17)
S(5) [#] 10-Sr(3)-S(9)	142.44(7)	S(5) [#] 4-Mn(1)-S(5)	94.4(2)
S(5) [#] 11-Sr(3)-S(9)	66.06(10)	S(5)#4-Mn(1)-S(2)#4	86.69(13)
S(5) [#] 12-Sr(3)-S(9)	142.44(7)	S(5)-Mn(1)-S(2)#4	174.52(19)
S(5) [#] 13-Sr(3)-S(9)	66.06(10)	S(5) [#] 4-Mn(1)-S(2)	174.52(19)
S(5) [#] 4-Sr(3)-S(9)	67.24(10)	S(5)-Mn(1)-S(2)	86.69(13)
S(5)-Sr(3)-S(9)#13	142.44(7)	S(2) [#] 4-Mn(1)-S(2)	91.7(2)
S(5) [#] 10-Sr(3)-S(9) [#] 13	66.06(10)	S(5) [#] 4-Mn(1)-S(9) [#] 10	89.41(15)
S(5) [#] 11-Sr(3)-S(9) [#] 13	67.24(10)	S(5)-Mn(1)-S(9)#10	89.41(15)
S(5) [#] 12-Sr(3)-S(9) [#] 13	66.06(10)	S(2)#4-Mn(1)-S(9)#10	85.24(14)
S(5) [#] 13-Sr(3)-S(9) [#] 13	67.24(10)	S(2)-Mn(1)-S(9)#10	85.24(14)
S(5) [#] 4-Sr(3)-S(9) [#] 13	142.44(7)	S(5) [#] 4-Mn(1)-S(4)	102.17(15)
S(9)-Sr(3)-S(9)#13	120.000(1)	S(5)-Mn(1)-S(4)	102.17(15)
S(5)-Sr(3)-S(9)#10	66.06(10)	S(2) [#] 4-Mn(1)-S(4)	82.80(13)
S(5) [#] 10-Sr(3)-S(9) [#] 10	67.24(10)	S(2)-Mn(1)-S(4)	82.80(13)
S(5) [#] 11-Sr(3)-S(9) [#] 10	142.44(7)	S(9)#10-Mn(1)-S(4)	162.8(2)
S(5) [#] 12-Sr(3)-S(9) [#] 10	67.24(10)	S(5)#14-Mn(2)-S(5)	96.3(2)
S(5) [#] 13-Sr(3)-S(9) [#] 10	142.44(7)	S(5)#14-Mn(2)-S(10)#10	95.42(15)
S(5) [#] 4-Sr(3)-S(9) [#] 10	66.06(10)	S(5)-Mn(2)-S(10)#10	95.42(15)
S(9)-Sr(3)-S(9)#10	120	S(5)#14-Mn(2)-S(2)	176.55(18)
S(9) [#] 13-Sr(3)-S(9) [#] 10	120	S(5)-Mn(2)-S(2)	86.40(13)
S(5)-Ga(1)-S(1)	125.08(16)	S(10)#10-Mn(2)-S(2)	86.43(14)
S(5)-Ga(1)-S(10)	113.89(18)	S(5)#14-Mn(2)-S(2)#14	86.40(13)
S(1)-Ga(1)-S(10)	99.3(2)	S(5)-Mn(2)-S(2)#14	176.55(18)
S(5)-Ga(1)-S(9)	109.74(18)	S(10)#10-Mn(2)-S(2)#14	86.43(14)
S(1)-Ga(1)-S(9)	101.00(19)	S(2)-Mn(2)-S(2)#14	90.8(2)

S(5) [#] 14-Mn(2)-S(3)	97.71(15)	S(7) [#] 6-Mn(4)-S(1) [#] 10	78.78(13)
S(5)-Mn(2)-S(3)	97.71(15)	S(1) [#] 12-Mn(4)-S(1) [#] 10	86.4(2)
S(10) [#] 10-Mn(2)-S(3)	160.3(2)	S(11)-Mn(4)-Sr(2)	52.09(11)
S(2)-Mn(2)-S(3)	79.77(12)	S(6) [#] 14-Mn(5)-S(3) [#] 2	93.92(16)
S(2) [#] 14-Mn(2)-S(3)	79.77(12)	S(6)-Mn(5)-S(3) [#] 2	93.92(16)
S(6) [#] 4-Mn(3)-S(6)	92.7(2)	S(6) [#] 14-Mn(5)-S(1) [#] 15	87.77(13)
S(6)#4-Mn(3)-S(1)#2	176.45(19)	S(6)-Mn(5)-S(1)#15	176.18(19)
S(6)-Mn(3)-S(1) [#] 2	88.39(13)	S(3) [#] 2-Mn(5)-S(1) [#] 15	88.03(15)
S(6)#4-Mn(3)-S(1)#1	88.39(13)	S(6) [#] 14-Mn(5)-S(1) [#] 2	176.18(19)
S(6)-Mn(3)-S(1) [#] 1	176.45(19)	$S(6)-Mn(5)-S(1)^{\#}2$	87.77(13)
S(1) [#] 2-Mn(3)-S(1) [#] 1	90.4(2)	S(3) [#] 2-Mn(5)-S(1) [#] 2	88.03(15)
S(6)#4-Mn(3)-S(4)#2	88.78(16)	S(1) [#] 15-Mn(5)-S(1) [#] 2	89.0(2)
S(6)-Mn(3)-S(4) [#] 2	88.78(16)	S(6) [#] 14-Mn(5)-S(8)	98.67(15)
S(1) [#] 2-Mn(3)-S(4) [#] 2	87.85(15)	S(6)-Mn(5)-S(8)	98.67(15)
S(1) [#] 1-Mn(3)-S(4) [#] 2	87.85(15)	S(3) [#] 2-Mn(5)-S(8)	161.2(2)
S(6)#4-Mn(3)-S(7)	102.64(15)	S(1) [#] 15-Mn(5)-S(8)	78.66(14)
S(6)-Mn(3)-S(7)	102.64(15)	S(1) [#] 2-Mn(5)-S(8)	78.66(14)
S(1) [#] 2-Mn(3)-S(7)	80.42(15)	S(11)-Mn(6)-S(11)#14	96.0(2)
S(1) [#] 1-Mn(3)-S(7)	80.42(15)	S(11)-Mn(6)-S(8)#6	96.55(15)
S(4) [#] 2-Mn(3)-S(7)	163.3(2)	S(11)#14-Mn(6)-S(8)#6	96.55(15)
S(11)-Mn(4)-S(11)#4	93.9(2)	S(11)-Mn(6)-S(10)#10	101.88(16)
S(11)-Mn(4)-S(9)#10	105.83(15)	S(11)#14-Mn(6)-S(10)#10	101.88(16)
S(11)#4-Mn(4)-S(9)#10	105.83(15)	S(8) [#] 6-Mn(6)-S(10) [#] 10	152.3(2)
S(11)-Mn(4)-S(7)#6	90.94(15)	S(11)-Mn(6)-S(1)#10	88.81(14)
S(11)#4-Mn(4)-S(7)#6	90.94(15)	S(11)#14-Mn(6)-S(1)#10	173.91(16)
S(9)#10-Mn(4)-S(7)#6	155.1(2)	S(8)#6-Mn(6)-S(1)#10	79.17(13)
S(11)-Mn(4)-S(1)#12	169.37(18)	S(10)#10-Mn(6)-S(1)#10	80.66(14)
S(11)#4-Mn(4)-S(1)#12	89.00(14)	S(11)-Mn(6)-S(1)#16	173.91(16)
S(9)#10-Mn(4)-S(1)#12	83.12(14)	S(11)#14-Mn(6)-S(1)#16	88.81(14)
S(7)#6-Mn(4)-S(1)#12	78.78(13)	S(8) [#] 6-Mn(6)-S(1) [#] 16	79.17(13)
S(11)-Mn(4)-S(1)#10	89.00(14)	S(10)#10-Mn(6)-S(1)#16	80.66(14)
S(11)#4-Mn(4)-S(1)#10	169.37(18)	S(1) [#] 10-Mn(6)-S(1) [#] 16	86.1(2)
S(9) [#] 10-Mn(4)-S(1) [#] 10	83.12(14)		

#1 -y+1,x-y,-z+2 #2 -y+1,x-y,z #3 -x+y+1,-x+1,-z+2 #4 x,y,-z+2 #5 -x+y+1,-x+1,z #6 -y,x-y,z #7 -x+y,-x,-z+2 #8 -x+y,-x,z #9 -y,x-y,-z+2 #10 -x+y,-x+1,z #11 -y+1,x-y+1,-z+2 #12 -x+y,-x+1,-z+2 #13 -y+1,x-y+1,z #14 x,y,-z+1 #15 -y+1,x-y,-z+1 #16 -x+y,-x+1,-z+1

Table S4c. Selected distances (Å) and angles (degrees) for BaMn6Ga6S16.

Ba(1)-S(7)	3.149(4)	Ba(3)-S(10)#16	3.659(5)
Ba(1)-S(7)#1	3.149(4)	Ba(3)-S(10)	3.659(5)
Ba(1)-S(7)#2	3.149(4)	Ba(3A)-S(2)#21	3.143(3)
Ba(1)-S(7)#3	3.149(4)	Ba(3A)-S(2)#13	3.143(3)
Ba(1)-S(7)#4	3.149(4)	Ba(3A)-S(2)#10	3.143(3)
Ba(1)-S(7)#5	3.149(4)	Ba(3A)-S(2)#22	3.143(3)
Ba(1)-S(5) [#] 2	3.675(5)	Ba(3A)-S(2)	3.143(3)
Ba(1)-S(5)#4	3.675(5)	Ba(3A)-S(2)#5	3.143(3)
Ba(1)-S(5)	3.675(5)	Ga(1)-S(2)	2.223(4)
Ba(1A)-S(7)	3.139(4)	Ga(1)-S(4)	2.298(3)
Ba(1A)-S(7)#7	3.139(4)	Ga(1)-S(3)	2.320(5)
Ba(1A)-S(7)#2	3.139(4)	Ga(1)-S(1)	2.322(5)
Ba(1A)-S(7)#4	3.139(4)	Ga(2)-S(7)	2.234(4)
Ba(1A)-S(7)#8	3.139(4)	Ga(2)-S(4)	2.287(3)
Ba(1A)-S(7)#9	3.139(4)	Ga(2)-S(8) [#] 4	2.301(5)
Ba(2)-S(2)	3.157(3)	Ga(2)-S(5)	2.314(6)
Ba(2)-S(2)#10	3.157(3)	Ga(3)-S(11)	2.225(4)
Ba(2)-S(2)#11	3.157(3)	Ga(3)-S(6)	2.260(4)
Ba(2)-S(2)#12	3.157(3)	Ga(3)-S(10)	2.326(4)
Ba(2)-S(2)#13	3.157(3)	Ga(3)-S(9)	2.328(4)
Ba(2)-S(2)#8	3.157(3)	Mn(1)-S(2) [#] 8	2.527(3)
Ba(2)-S(1)#13	3.654(4)	Mn(1)-S(2)	2.527(3)
Ba(2)-S(1)	3.654(4)	Mn(1)-S(6) [#] 4	2.632(6)
Ba(2)-S(1)#10	3.654(4)	Mn(1)-S(6) [#] 9	2.632(6)
Ba(2A)-S(11) [#] 5	3.146(3)	Mn(1)-S(8) [#] 4	2.653(7)
Ba(2A)-S(11)	3.146(3)	Mn(1)-S(1) [#] 10	2.719(9)
Ba(2A)-S(11)#15	3.146(3)	$Mn(2)-S(7)^{\#}5$	2.505(4)
Ba(2A)-S(11)#16	3.146(3)	Mn(2)-S(7)	2.505(4)
Ba(2A)-S(11)#17	3.146(3)	Mn(2)-S(9)	2.607(5)
Ba(2A)-S(11)#18	3.146(3)	Mn(2)-S(5) [#] 2	2.707(10)
Ba(3)-S(11) [#] 8	3.140(3)	Mn(2)-S(6) [#] 5	2.723(6)
Ba(3)-S(11)	3.140(3)	Mn(2)-S(6)	2.723(6)
Ba(3)-S(11)#16	3.140(3)	Mn(3)-S(7)	2.495(4)
Ba(3)-S(11)#19	3.140(3)	Mn(3)-S(7) [#] 8	2.495(4)
Ba(3)-S(11)#20	3.140(3)	Mn(3)-S(8)	2.685(10)
Ba(3)-S(11) [#] 17	3.140(3)	Mn(3)-S(6) [#] 8	2.707(6)
Ba(3)-S(10)#17	3.659(5)	Mn(3)-S(6)	2.707(6)

Mn(3)-S(10)	2.744(6)	S(7)#4-Ba(1)-S(5)#2	143.60(6)
Mn(4)-S(2)#22	2.506(3)	S(7)#5-Ba(1)-S(5)#2	66.61(13)
Mn(4)-S(2)#13	2.506(3)	S(7)-Ba(1)-S(5)#4	143.60(6)
Mn(4)-S(3)	2.617(9)	S(7) [#] 1-Ba(1)-S(5) [#] 4	66.61(13)
Mn(4)-S(6)#16	2.640(6)	S(7) [#] 2-Ba(1)-S(5) [#] 4	66.61(13)
Mn(4)-S(6)#15	2.640(6)	S(7) [#] 3-Ba(1)-S(5) [#] 4	65.93(13)
Mn(4)-S(5)#13	2.840(7)	S(7) [#] 4-Ba(1)-S(5) [#] 4	65.93(13)
Mn(5)-S(11)	2.505(4)	S(7) [#] 5-Ba(1)-S(5) [#] 4	143.60(6)
Mn(5)-S(11) [#] 8	2.505(4)	S(5) [#] 2-Ba(1)-S(5) [#] 4	120
Mn(5)-S(4)#20	2.573(6)	S(7)-Ba(1)-S(5)	65.93(13)
Mn(5)-S(4)#17	2.573(6)	S(7) [#] 1-Ba(1)-S(5)	143.60(6)
Mn(5)-S(10)#17	2.744(7)	S(7) [#] 2-Ba(1)-S(5)	143.60(6)
Mn(5)-S(1)#17	2.808(6)	S(7) [#] 3-Ba(1)-S(5)	66.61(13)
Mn(6)-S(11)#16	2.481(4)	S(7)#4-Ba(1)-S(5)	66.61(13)
Mn(6)-S(11)#15	2.481(4)	S(7)#5-Ba(1)-S(5)	65.93(13)
Mn(6)-S(4)	2.608(6)	S(5)#2-Ba(1)-S(5)	120.000(1)
Mn(6)-S(4)#5	2.608(6)	S(5)#4-Ba(1)-S(5)	120.000(2)
Mn(6)-S(9)	2.649(6)	S(7)-Ba(1A)-S(7)#7	132.37(4)
Mn(6)-S(3)	2.849(6)	S(7)-Ba(1A)-S(7)#2	88.75(8)
S(7)-Ba(1)-S(7)#1	132.54(4)	S(7) [#] 7-Ba(1A)-S(7) [#] 2	72.29(11)
S(7)-Ba(1)-S(7)#2	88.39(8)	S(7)-Ba(1A)-S(7)#4	88.75(8)
S(7) [#] 1-Ba(1)-S(7) [#] 2	72.80(11)	S(7)#7-Ba(1A)-S(7)#4	132.37(4)
S(7)-Ba(1)-S(7)#3	132.54(4)	S(7)#2-Ba(1A)-S(7)#4	88.75(8)
S(7) [#] 1-Ba(1)-S(7) [#] 3	88.39(8)	S(7)-Ba(1A)-S(7)#8	72.29(11)
S(7) [#] 2-Ba(1)-S(7) [#] 3	132.54(4)	S(7)#7-Ba(1A)-S(7)#8	88.75(8)
S(7)-Ba(1)-S(7)#4	88.39(8)	S(7) [#] 2-Ba(1A)-S(7) [#] 8	132.37(4)
S(7) [#] 1-Ba(1)-S(7) [#] 4	132.54(4)	S(7)#4-Ba(1A)-S(7)#8	132.37(4)
S(7) [#] 2-Ba(1)-S(7) [#] 4	88.39(8)	S(7)-Ba(1A)-S(7)#9	132.37(4)
S(7) [#] 3-Ba(1)-S(7) [#] 4	72.80(11)	S(7) [#] 7-Ba(1A)-S(7) [#] 9	88.75(8)
S(7)-Ba(1)-S(7) [#] 5	72.80(11)	S(7) [#] 2-Ba(1A)-S(7) [#] 9	132.37(4)
S(7) [#] 1-Ba(1)-S(7) [#] 5	88.39(8)	S(7)#4-Ba(1A)-S(7)#9	72.29(11)
S(7) [#] 2-Ba(1)-S(7) [#] 5	132.54(4)	S(7)#8-Ba(1A)-S(7)#9	88.75(8)
S(7) [#] 3-Ba(1)-S(7) [#] 5	88.39(8)	S(2)-Ba(2)-S(2)#10	88.42(8)
S(7) [#] 4-Ba(1)-S(7) [#] 5	132.54(4)	S(2)-Ba(2)-S(2)#11	132.52(3)
S(7)-Ba(1)-S(5)#2	66.61(13)	S(2)#10-Ba(2)-S(2)#11	132.52(3)
S(7)#1-Ba(1)-S(5)#2	65.93(13)	S(2)-Ba(2)-S(2)#12	132.52(3)
S(7)#2-Ba(1)-S(5)#2	65.93(13)	S(2) [#] 10-Ba(2)-S(2) [#] 12	72.75(11)
S(7)#3-Ba(1)-S(5)#2	143.60(6)	S(2)#11-Ba(2)-S(2)#12	88.42(8)

S(2)-Ba(2)-S(2)#13	88.42(8)	S(11)#15-Ba(2A)-S(11)#17	132.51(3)
$S(2)^{\#}10-Ba(2)-S(2)^{\#}13$	88.42(8)	$S(11)^{#16}-Ba(2A)-S(11)^{#17}$	88.44(7)
$S(2)^{\#11}-Ba(2)-S(2)^{\#13}$	72.75(11)	$S(11)^{#}5-Ba(2A)-S(11)^{#}18$	88.45(7)
$S(2)^{\#}12-Ba(2)-S(2)^{\#}13$	132.52(3)	S(11)-Ba(2A)- $S(11)$ [#] 18	132.51(3)
$S(2)-Ba(2)-S(2)^{\#}8$	72.75(11)	$S(11)^{#15}-Ba(2A)-S(11)^{#18}$	88.44(7)
$S(2)^{\#10-Ba(2)-S(2)^{\#8}}$	132.52(3)	$S(11)^{\#}16-Ba(2A)-S(11)^{\#}18$	132.51(3)
S(2) [#] 11-Ba(2)-S(2) [#] 8	88.42(8)	S(11) [#] 17-Ba(2A)-S(11) [#] 18	72.71(10)
S(2) [#] 12-Ba(2)-S(2) [#] 8	88.42(8)	S(11) [#] 8-Ba(3)-S(11)	72.44(11)
S(2) [#] 13-Ba(2)-S(2) [#] 8	132.52(3)	S(11) [#] 8-Ba(3)-S(11) [#] 16	132.42(3)
S(2)-Ba(2)-S(1)#13	143.60(5)	S(11)-Ba(3)-S(11) [#] 16	88.64(8)
S(2) [#] 10-Ba(2)-S(1) [#] 13	65.09(12)	S(11) [#] 8-Ba(3)-S(11) [#] 19	88.64(8)
S(2) [#] 11-Ba(2)-S(1) [#] 13	67.44(12)	S(11)-Ba(3)-S(11)#19	132.42(3)
S(2) [#] 12-Ba(2)-S(1) [#] 13	65.09(12)	S(11) [#] 16-Ba(3)-S(11) [#] 19	72.44(11)
S(2)#13-Ba(2)-S(1)#13	67.44(12)	S(11) [#] 8-Ba(3)-S(11) [#] 20	88.64(8)
S(2)#8-Ba(2)-S(1)#13	143.60(5)	S(11)-Ba(3)-S(11)#20	132.42(3)
S(2)-Ba(2)-S(1)	67.44(12)	S(11) [#] 16-Ba(3)-S(11) [#] 20	132.42(3)
S(2)#10-Ba(2)-S(1)	143.60(5)	S(11) [#] 19-Ba(3)-S(11) [#] 20	88.64(8)
S(2)#11-Ba(2)-S(1)	65.09(12)	S(11) [#] 8-Ba(3)-S(11) [#] 17	132.42(3)
S(2)#12-Ba(2)-S(1)	143.60(5)	S(11)-Ba(3)-S(11)#17	88.64(8)
S(2)#13-Ba(2)-S(1)	65.09(12)	S(11) [#] 16-Ba(3)-S(11) [#] 17	88.64(8)
S(2)#8-Ba(2)-S(1)	67.44(12)	S(11) [#] 19-Ba(3)-S(11) [#] 17	132.42(3)
S(1)#13-Ba(2)-S(1)	120.000(1)	S(11) [#] 20-Ba(3)-S(11) [#] 17	72.44(11)
S(2)-Ba(2)-S(1)#10	65.09(12)	S(11) [#] 8-Ba(3)-S(10) [#] 17	65.93(10)
S(2)#10-Ba(2)-S(1)#10	67.44(12)	S(11)-Ba(3)-S(10)#17	65.93(10)
S(2)#11-Ba(2)-S(1)#10	143.60(5)	S(11) [#] 16-Ba(3)-S(10) [#] 17	143.78(5)
S(2)#12-Ba(2)-S(1)#10	67.44(12)	S(11) [#] 19-Ba(3)-S(10) [#] 17	143.78(5)
S(2)#13-Ba(2)-S(1)#10	143.60(5)	S(11) [#] 20-Ba(3)-S(10) [#] 17	66.49(10)
S(2)#8-Ba(2)-S(1)#10	65.09(12)	S(11) [#] 17-Ba(3)-S(10) [#] 17	66.49(10)
S(1)#13-Ba(2)-S(1)#10	120	S(11) [#] 8-Ba(3)-S(10) [#] 16	143.78(5)
S(1)-Ba(2)-S(1)#10	120	S(11)-Ba(3)-S(10)#16	143.78(5)
S(11) [#] 5-Ba(2A)-S(11)	72.71(10)	S(11) [#] 16-Ba(3)-S(10) [#] 16	66.49(10)
S(11)#5-Ba(2A)-S(11)#15	88.45(7)	S(11) [#] 19-Ba(3)-S(10) [#] 16	66.49(10)
S(11)-Ba(2A)-S(11)#15	132.51(3)	S(11) [#] 20-Ba(3)-S(10) [#] 16	65.93(10)
S(11)#5-Ba(2A)-S(11)#16	132.51(3)	S(11) [#] 17-Ba(3)-S(10) [#] 16	65.93(10)
S(11)-Ba(2A)-S(11)#16	88.45(7)	S(10) [#] 17-Ba(3)-S(10) [#] 16	120
S(11)#15-Ba(2A)-S(11)#16	72.71(10)	S(11) [#] 8-Ba(3)-S(10)	66.49(10)
S(11)#5-Ba(2A)-S(11)#17	132.51(3)	S(11)-Ba(3)-S(10)	66.49(10)
S(11)-Ba(2A)-S(11)#17	88.45(7)	S(11)#16-Ba(3)-S(10)	65.93(10)

S(11)#19-Ba(3)-S(10)	65.93(10)	S(2)#8-Mn(1)-S(2)	95.58(16)
S(11) [#] 20-Ba(3)-S(10)	143.78(5)	S(2)#8-Mn(1)-S(6)#4	176.12(17)
S(11) [#] 17-Ba(3)-S(10)	143.78(5)	S(2)-Mn(1)-S(6)#4	87.26(14)
S(10) [#] 17-Ba(3)-S(10)	120	S(2) [#] 8-Mn(1)-S(6) [#] 9	87.26(14)
S(10) [#] 16-Ba(3)-S(10)	120	S(2)-Mn(1)-S(6) [#] 9	176.12(17)
S(2) [#] 21-Ba(3A)-S(2) [#] 13	132.29(3)	S(6)#4-Mn(1)-S(6)#9	89.8(3)
S(2) [#] 21-Ba(3A)-S(2) [#] 10	72.05(11)	S(2)#8-Mn(1)-S(8)#4	100.44(17)
S(2)#13-Ba(3A)-S(2)#10	88.92(8)	S(2)-Mn(1)-S(8)#4	100.44(17)
S(2) [#] 21-Ba(3A)-S(2) [#] 22	88.92(8)	S(6) [#] 4-Mn(1)-S(8) [#] 4	81.60(17)
S(2)#13-Ba(3A)-S(2)#22	72.05(11)	S(6) [#] 9-Mn(1)-S(8) [#] 4	81.60(17)
S(2)#10-Ba(3A)-S(2)#22	132.29(3)	S(2) [#] 8-Mn(1)-S(1) [#] 10	89.25(12)
S(2) [#] 21-Ba(3A)-S(2)	132.30(3)	S(2)-Mn(1)-S(1)#10	89.25(12)
S(2) [#] 13-Ba(3A)-S(2)	88.92(8)	S(6) [#] 4-Mn(1)-S(1) [#] 10	88.14(12)
S(2)#10-Ba(3A)-S(2)	88.92(8)	S(6)#9-Mn(1)-S(1)#10	88.14(12)
S(2) [#] 22-Ba(3A)-S(2)	132.29(3)	S(8)#4-Mn(1)-S(1)#10	165.5(2)
S(2)#21-Ba(3A)-S(2)#5	88.92(8)	S(7)#5-Mn(2)-S(7)	96.50(19)
S(2)#13-Ba(3A)-S(2)#5	132.29(3)	S(7)#5-Mn(2)-S(9)	103.86(14)
S(2)#10-Ba(3A)-S(2)#5	132.29(3)	S(7)-Mn(2)-S(9)	103.86(14)
S(2)#22-Ba(3A)-S(2)#5	88.92(8)	S(7)#5-Mn(2)-S(5)#2	92.66(13)
S(2)-Ba(3A)-S(2)#5	72.05(11)	S(7)-Mn(2)-S(5)#2	92.66(13)
S(2)-Ga(1)-S(4)	118.06(14)	S(9)-Mn(2)-S(5)#2	154.9(2)
S(2)-Ga(1)-S(3)	116.38(13)	S(7)#5-Mn(2)-S(6)#5	88.07(16)
S(4)-Ga(1)-S(3)	99.4(2)	S(7)-Mn(2)-S(6)#5	170.86(16)
S(2)-Ga(1)-S(1)	113.59(13)	S(9)-Mn(2)-S(6)#5	82.60(14)
S(4)-Ga(1)-S(1)	100.7(2)	S(5)#2-Mn(2)-S(6)#5	79.19(13)
S(3)-Ga(1)-S(1)	106.61(16)	S(7)#5-Mn(2)-S(6)	170.86(16)
S(7)-Ga(2)-S(4)	110.12(14)	S(7)-Mn(2)-S(6)	88.07(16)
S(7)-Ga(2)-S(8)#4	112.40(15)	S(9)-Mn(2)-S(6)	82.60(14)
S(4)-Ga(2)-S(8)#4	107.1(2)	S(5)#2-Mn(2)-S(6)	79.19(13)
S(7)-Ga(2)-S(5)	110.56(16)	S(6)#5-Mn(2)-S(6)	86.4(3)
S(4)-Ga(2)-S(5)	109.0(2)	S(7)-Mn(3)-S(7)#8	95.81(19)
S(8)#4-Ga(2)-S(5)	107.48(15)	S(7)-Mn(3)-S(8)	95.58(14)
S(11)-Ga(3)-S(6)	123.32(15)	S(7) [#] 8-Mn(3)-S(8)	95.58(14)
S(11)-Ga(3)-S(10)	111.09(15)	S(7)-Mn(3)-S(6)#8	173.81(17)
S(6)-Ga(3)-S(10)	101.4(2)	S(7) [#] 8-Mn(3)-S(6) [#] 8	88.62(16)
S(11)-Ga(3)-S(9)	112.93(15)	S(8)-Mn(3)-S(6)#8	79.64(14)
S(6)-Ga(3)-S(9)	100.1(2)	S(7)-Mn(3)-S(6)	88.62(16)
S(10)-Ga(3)-S(9)	106.15(15)	S(7) [#] 8-Mn(3)-S(6)	173.81(17)

S(8)-Mn(3)-S(6)	79.64(14)	S(11)#8-Mn(5)-S(4)#20	85.90(15)
S(6)#8-Mn(3)-S(6)	86.7(3)	S(11)-Mn(5)-S(4)#17	85.90(14)
S(7)-Mn(3)-S(10)	101.99(15)	S(11) [#] 8-Mn(5)-S(4) [#] 17	176.6(2)
S(7) [#] 8-Mn(3)-S(10)	101.99(15)	S(4) [#] 20-Mn(5)-S(4) [#] 17	92.4(3)
S(8)-Mn(3)-S(10)	153.6(2)	S(11)-Mn(5)-S(10)#17	90.32(14)
S(6) [#] 8-Mn(3)-S(10)	81.24(14)	S(11) [#] 8-Mn(5)-S(10) [#] 17	90.32(14)
S(6)-Mn(3)-S(10)	81.24(14)	S(4) [#] 20-Mn(5)-S(10) [#] 17	86.59(13)
S(2) [#] 22-Mn(4)-S(2) [#] 13	95.02(17)	S(4) [#] 17-Mn(5)-S(10) [#] 17	86.59(13)
S(2) [#] 22-Mn(4)-S(3)	93.76(14)	S(11)-Mn(5)-S(1)#17	100.11(16)
S(2) [#] 13-Mn(4)-S(3)	93.76(14)	S(11) [#] 8-Mn(5)-S(1) [#] 17	100.11(16)
S(2) [#] 22-Mn(4)-S(6) [#] 16	175.93(19)	S(11) [#] 16-Mn(6)-S(4)	85.63(14)
S(2) [#] 13-Mn(4)-S(6) [#] 16	87.52(14)	S(11) [#] 15-Mn(6)-S(4)	175.93(18)
S(3)-Mn(4)-S(6)#16	89.24(12)	S(11) [#] 16-Mn(6)-S(4) [#] 5	175.93(18)
S(2) [#] 22-Mn(4)-S(6) [#] 15	87.52(14)	S(11)#15-Mn(6)-S(4)#5	85.63(14)
S(2) [#] 13-Mn(4)-S(6) [#] 15	175.93(19)	S(4)-Mn(6)-S(4)#5	91.2(3)
S(3)-Mn(4)-S(6)#15	89.24(12)	S(11) [#] 16-Mn(6)-S(9)	94.75(14)
S(6) [#] 16-Mn(4)-S(6) [#] 15	89.8(3)	S(11)#15-Mn(6)-S(9)	94.75(14)
S(2) [#] 22-Mn(4)-S(5) [#] 13	98.22(17)	S(4)-Mn(6)-S(9)	87.62(13)
S(2) [#] 13-Mn(4)-S(5) [#] 13	98.22(17)	S(4)#5-Mn(6)-S(9)	87.62(13)
S(3)-Mn(4)-S(5)#13	162.2(2)	S(11)#16-Mn(6)-S(3)	96.69(16)
S(6)#16-Mn(4)-S(5)#13	78.24(16)	S(11)#15-Mn(6)-S(3)	96.69(16)
S(6) [#] 15-Mn(4)-S(5) [#] 13	78.24(16)	S(4)-Mn(6)-S(3)	80.26(15)
S(11)-Mn(5)-S(11)#8	95.60(18)	S(4)#5-Mn(6)-S(3)	80.26(15)
S(11)-Mn(5)-S(4)#20	176.6(2)	S(9)-Mn(6)-S(3)	162.6(2)

#1 -y+1,x-y,-z+2 #2 -y+1,x-y,z #3 -x+y+1,-x+1,-z+2 #4 x,y,-z+2 #5 -x+y+1,-x+1,z #6 -y,x-y,z #7 -x+y,-x,-z+2 #8 -x+y,-x,z #9 -y,x-y,-z+2 #10 -x+y,-x+1,z #11 -y+1,x-y+1,-z+2 #12 -x+y,-x+1,-z+2 #13 -y+1,x-y+1,z #14 x,y,-z+1 #15 -y+1,x-y,-z+1 #16 -x+y,-x+1,-z+1

Table S4d. Selected distances (Å) and angles (degrees) for PbMn6Ga6S16.

Pb(1)-S(7)#1	3.042(5)	Ga(1)-S(4)	2.280(3)
Pb(1)-S(7) [#] 2	3.042(5)	Ga(1)-S(3)	2.299(5)
Pb(1)-S(7) [#] 3	3.042(5)	Ga(1)-S(2)	2.301(5)
Pb(1)-S(7)	3.042(5)	Ga(2)-S(7)	2.221(4)
Pb(1)-S(7) [#] 4	3.042(5)	Ga(2)-S(4)	2.297(3)
Pb(1)-S(7) [#] 5	3.042(5)	Ga(2)-S(5)	2.312(5)
Pb(1A)-S(7) [#] 6	3.032(5)	Ga(2)-S(6)	2.319(5)
Pb(1A)-S(7)#3	3.032(5)	Ga(3)-S(11)	2.227(4)
Pb(1A)-S(7) [#] 7	3.032(5)	Ga(3)-S(8)	2.268(3)
Pb(1A)-S(7)	3.032(5)	Ga(3)-S(10)	2.320(5)
Pb(1A)-S(7) [#] 8	3.032(5)	Ga(3)-S(9)	2.323(5)
Pb(1A)-S(7) [#] 5	3.032(5)	Mn(1)-S(1)	2.528(6)
Pb(2)-S(1) [#] 1	3.026(5)	Mn(1)-S(1)#1	2.528(6)
Pb(2)-S(1)	3.026(5)	Mn(1)-S(2)#9	2.639(9)
Pb(2)-S(1) [#] 9	3.026(5)	Mn(1)-S(10)#22	2.653(9)
Pb(2)-S(1)#10	3.026(5)	Mn(1)-S(8)#13	2.719(5)
Pb(2)-S(1)#11	3.026(5)	Mn(1)-S(8) [#] 22	2.719(5)
Pb(2)-S(1)#12	3.026(5)	Mn(2)-S(1)	2.524(6)
Pb(2A)-S(1)#6	3.023(5)	Mn(2)-S(1)#6	2.524(6)
Pb(2A)-S(1)	3.023(5)	Mn(2)-S(3) [#] 9	2.644(8)
Pb(2A)-S(1) [#] 13	3.023(5)	Mn(2)-S(9) [#] 9	2.656(9)
Pb(2A)-S(1) [#] 12	3.023(5)	Mn(2)-S(8) [#] 9	2.689(5)
Pb(2A)-S(1) [#] 9	3.023(5)	Mn(2)-S(8) [#] 13	2.689(5)
Pb(2A)-S(1) [#] 14	3.023(5)	Mn(3)-S(7)	2.541(6)
Pb(3)-S(11) [#] 15	3.021(4)	Mn(3)-S(7) [#] 6	2.541(6)
Pb(3)-S(11) [#] 16	3.021(4)	Mn(3)-S(8) [#] 6	2.607(4)
Pb(3)-S(11) [#] 17	3.021(4)	Mn(3)-S(8)	2.607(4)
Pb(3)-S(11) [#] 18	3.021(4)	Mn(3)-S(5) [#] 3	2.633(8)
Pb(3)-S(11) [#] 19	3.021(4)	Mn(3)-S(3)	2.694(9)
Pb(3)-S(11)	3.021(4)	Mn(4)-S(7)	2.545(6)
Pb(3A)-S(11) [#] 20	3.028(4)	Mn(4)-S(7) [#] 1	2.546(6)
Pb(3A)-S(11)#18	3.028(4)	Mn(4)-S(6) [#] 3	2.614(8)
Pb(3A)-S(11)#15	3.028(4)	Mn(4)-S(8)#6	2.648(4)
Pb(3A)-S(11)#21	3.028(4)	Mn(4)-S(8) [#] 23	2.648(4)
Pb(3A)-S(11) [#] 6	3.028(4)	Mn(4)-S(2)	2.699(9)
Pb(3A)-S(11)	3.028(4)	Mn(5)-S(11)#6	2.522(5)
Ga(1)-S(1)	2.243(4)	Mn(5)-S(11)	2.522(5)

Mn(5)-S(4)#3	2.604(4)	S(7)-Pb(1A)-S(7)#5	86.69(15)
Mn(5)-S(4)#7	2.604(4)	S(7) [#] 8-Pb(1A)-S(7) [#] 5	75.1(2)
Mn(5)-S(9)#15	2.639(8)	S(1) [#] 1-Pb(2)-S(1)	75.8(2)
Mn(5)-S(5) [#] 3	2.782(9)	S(1) [#] 1-Pb(2)-S(1) [#] 9	133.54(7)
Mn(6)-S(11)	2.512(5)	S(1)-Pb(2)-S(1) [#] 9	86.19(15)
Mn(6)-S(11)#19	2.512(5)	S(1) [#] 1-Pb(2)-S(1) [#] 10	86.19(15)
Mn(6)-S(4) [#] 7	2.570(4)	S(1)-Pb(2)-S(1)#10	133.54(7)
Mn(6)-S(4) [#] 24	2.570(4)	S(1) [#] 9-Pb(2)-S(1) [#] 10	133.54(7)
Mn(6)-S(10)#15	2.623(9)	S(1) [#] 1-Pb(2)-S(1) [#] 11	86.19(15)
Mn(6)-S(6)#24	2.785(9)	S(1)-Pb(2)-S(1) [#] 11	133.54(7)
S(7) [#] 1-Pb(1)-S(7) [#] 2	86.33(14)	S(1) [#] 9-Pb(2)-S(1) [#] 11	75.8(2)
S(7) [#] 1-Pb(1)-S(7) [#] 3	133.47(7)	S(1) [#] 10-Pb(2)-S(1) [#] 11	86.19(15)
S(7) [#] 2-Pb(1)-S(7) [#] 3	75.6(2)	S(1) [#] 1-Pb(2)-S(1) [#] 12	133.54(7)
S(7) [#] 1-Pb(1)-S(7)	75.6(2)	S(1)-Pb(2)-S(1)#12	86.19(15)
S(7) [#] 2-Pb(1)-S(7)	133.47(7)	S(1)#9-Pb(2)-S(1)#12	86.19(15)
S(7) [#] 3-Pb(1)-S(7)	86.33(14)	S(1)#10-Pb(2)-S(1)#12	75.8(2)
S(7) [#] 1-Pb(1)-S(7) [#] 4	86.33(14)	S(1)#11-Pb(2)-S(1)#12	133.54(7)
S(7) [#] 2-Pb(1)-S(7) [#] 4	86.33(14)	S(1)#6-Pb(2A)-S(1)	75.7(2)
S(7) [#] 3-Pb(1)-S(7) [#] 4	133.47(7)	S(1)#6-Pb(2A)-S(1)#13	86.30(15)
S(7)-Pb(1)-S(7)#4	133.47(7)	S(1)-Pb(2A)-S(1)#13	133.49(7)
S(7) [#] 1-Pb(1)-S(7) [#] 5	133.47(7)	S(1)#6-Pb(2A)-S(1)#12	133.49(7)
S(7) [#] 2-Pb(1)-S(7) [#] 5	133.47(7)	S(1)-Pb(2A)-S(1)#12	86.30(15)
S(7) [#] 3-Pb(1)-S(7) [#] 5	86.33(14)	S(1)#13-Pb(2A)-S(1)#12	133.48(7)
S(7)-Pb(1)-S(7)#5	86.33(14)	S(1)#6-Pb(2A)-S(1)#9	133.49(7)
S(7) [#] 4-Pb(1)-S(7) [#] 5	75.6(2)	S(1)-Pb(2A)-S(1)#9	86.30(15)
S(7) [#] 6-Pb(1A)-S(7) [#] 3	133.31(7)	S(1)#13-Pb(2A)-S(1)#9	75.7(2)
S(7) [#] 6-Pb(1A)-S(7) [#] 7	86.69(15)	S(1)#12-Pb(2A)-S(1)#9	86.30(15)
S(7) [#] 3-Pb(1A)-S(7) [#] 7	75.1(2)	S(1)#6-Pb(2A)-S(1)#14	86.30(15)
S(7) [#] 6-Pb(1A)-S(7)	75.1(2)	S(1)-Pb(2A)-S(1)#14	133.49(7)
S(7) [#] 3-Pb(1A)-S(7)	86.69(15)	S(1)#13-Pb(2A)-S(1)#14	86.30(15)
S(7) [#] 7-Pb(1A)-S(7)	133.31(7)	S(1)#12-Pb(2A)-S(1)#14	75.7(2)
S(7) [#] 6-Pb(1A)-S(7) [#] 8	86.69(15)	S(1)#9-Pb(2A)-S(1)#14	133.48(7)
S(7) [#] 3-Pb(1A)-S(7) [#] 8	133.31(7)	S(11)#15-Pb(3)-S(11)#16	133.46(6)
S(7)#7-Pb(1A)-S(7)#8	86.69(15)	S(11)#15-Pb(3)-S(11)#17	75.61(19)
S(7)-Pb(1A)-S(7)#8	133.31(7)	S(11)#16-Pb(3)-S(11)#17	86.36(14)
S(7) [#] 6-Pb(1A)-S(7) [#] 5	133.31(7)	S(11) [#] 15-Pb(3)-S(11) [#] 18	86.36(14)
S(7)#3-Pb(1A)-S(7)#5	86.69(15)	S(11)#16-Pb(3)-S(11)#18	75.61(19)
S(7) [#] 7-Pb(1A)-S(7) [#] 5	133.31(7)	S(11) [#] 17-Pb(3)-S(11) [#] 18	133.46(6)

S(11) [#] 15-Pb(3)-S(11) [#] 19	133.46(6)	S(8)-Ga(3)-S(10)	100.1(2)
S(11)#16-Pb(3)-S(11)#19	86.36(14)	S(11)-Ga(3)-S(9)	112.0(2)
S(11) [#] 17-Pb(3)-S(11) [#] 19	86.36(14)	S(8)-Ga(3)-S(9)	99.5(2)
S(11) [#] 18-Pb(3)-S(11) [#] 19	133.46(6)	S(10)-Ga(3)-S(9)	106.23(14)
S(11) [#] 15-Pb(3)-S(11)	86.36(14)	$S(1)-Mn(1)-S(1)^{\#}1$	94.7(3)
S(11) [#] 16-Pb(3)-S(11)	133.46(6)	S(1)-Mn(1)-S(2) [#] 9	94.34(19)
S(11) [#] 17-Pb(3)-S(11)	133.46(6)	S(1) [#] 1-Mn(1)-S(2) [#] 9	94.34(19)
S(11) [#] 18-Pb(3)-S(11)	86.36(14)	S(1)-Mn(1)-S(10) [#] 22	103.33(18)
S(11) [#] 19-Pb(3)-S(11)	75.61(19)	S(1) [#] 1-Mn(1)-S(10) [#] 22	103.33(18)
S(11) [#] 20-Pb(3A)-S(11) [#] 18	133.56(6)	S(2) [#] 9-Mn(1)-S(10) [#] 22	153.7(3)
S(11) [#] 20-Pb(3A)-S(11) [#] 15	75.91(19)	S(1)-Mn(1)-S(8)#13	88.57(13)
S(11) [#] 18-Pb(3A)-S(11) [#] 15	86.14(14)	S(1) [#] 1-Mn(1)-S(8) [#] 13	173.0(2)
S(11) [#] 20-Pb(3A)-S(11) [#] 21	86.14(14)	S(2) [#] 9-Mn(1)-S(8) [#] 13	79.29(16)
S(11)#18-Pb(3A)-S(11)#21	75.91(19)	S(10)#22-Mn(1)-S(8)#13	81.79(18)
S(11)#15-Pb(3A)-S(11)#21	133.56(6)	S(1)-Mn(1)-S(8)#22	173.0(2)
S(11)#20-Pb(3A)-S(11)#6	86.14(14)	S(1)#1-Mn(1)-S(8)#22	88.58(13)
S(11)#18-Pb(3A)-S(11)#6	133.56(6)	S(2)#9-Mn(1)-S(8)#22	79.29(16)
S(11)#15-Pb(3A)-S(11)#6	133.56(6)	S(10)#22-Mn(1)-S(8)#22	81.79(18)
S(11)#21-Pb(3A)-S(11)#6	86.14(14)	S(8)#13-Mn(1)-S(8)#22	87.50(19)
S(11)#20-Pb(3A)-S(11)	133.56(6)	S(1)-Mn(2)-S(1)#6	94.6(3)
S(11)#18-Pb(3A)-S(11)	86.14(14)	S(1)-Mn(2)-S(3)#9	93.63(19)
S(11)#15-Pb(3A)-S(11)	86.14(14)	S(1)#6-Mn(2)-S(3)#9	93.63(19)
S(11)#21-Pb(3A)-S(11)	133.56(6)	S(1)-Mn(2)-S(9)#9	103.74(18)
S(11)#6-Pb(3A)-S(11)	75.91(19)	S(1) [#] 6-Mn(2)-S(9) [#] 9	103.74(18)
S(1)-Ga(1)-S(4)	112.36(13)	S(3) [#] 9-Mn(2)-S(9) [#] 9	154.2(3)
S(1)-Ga(1)-S(3)	111.1(3)	S(1)-Mn(2)-S(8)#9	172.1(2)
S(4)-Ga(1)-S(3)	107.5(2)	S(1)#6-Mn(2)-S(8)#9	89.33(14)
S(1)-Ga(1)-S(2)	111.8(3)	S(3) [#] 9-Mn(2)-S(8) [#] 9	79.22(16)
S(4)-Ga(1)-S(2)	106.0(2)	S(9) [#] 9-Mn(2)-S(8) [#] 9	81.95(17)
S(3)-Ga(1)-S(2)	107.70(14)	S(1)-Mn(2)-S(8)#13	89.33(14)
S(7)-Ga(2)-S(4)	120.19(13)	S(1)#6-Mn(2)-S(8)#13	172.1(2)
S(7)-Ga(2)-S(5)	114.3(3)	S(3)#9-Mn(2)-S(8)#13	79.22(16)
S(4)-Ga(2)-S(5)	99.6(2)	S(9) [#] 9-Mn(2)-S(8) [#] 13	81.95(17)
S(7)-Ga(2)-S(6)	115.6(2)	S(8)#9-Mn(2)-S(8)#13	85.98(19)
S(4)-Ga(2)-S(6)	98.1(2)	S(7)-Mn(3)-S(7)#6	93.4(3)
S(5)-Ga(2)-S(6)	106.66(15)	S(7)-Mn(3)-S(8)#6	88.61(13)
S(11)-Ga(3)-S(8)	124.62(13)	S(7)#6-Mn(3)-S(8)#6	177.78(19)
S(11)-Ga(3)-S(10)	112.2(2)	S(7)-Mn(3)-S(8)	177.78(19)

$S(7)^{\#}6$ Mp(2) $S(8)$	88 61(12)	$S(11) Mp(5) S(4)^{\#3}$	177 8(2)
S(7) = VIII(3) - S(8)	88.01(13)	S(11)-WIII(3)-S(4) 5	177.8(2)
$S(8)^{#}6-Mn(3)-S(8)$	89.40(19)	$S(11)^{*}6-Mn(5)-S(4)^{*7}$	177.8(2)
$S(7)-Mn(3)-S(5)^{\#}3$	90.95(19)	S(11)-Mn(5)-S(4) [#] 7	86.10(13)
$S(7)^{\#}6-Mn(3)-S(5)^{\#}3$	90.95(19)	$S(4)^{\#}3-Mn(5)-S(4)^{\#}7$	92.56(19)
S(8) [#] 6-Mn(3)-S(5) [#] 3	88.0(2)	S(11) [#] 6-Mn(5)-S(9) [#] 15	92.15(17)
S(8)-Mn(3)-S(5) [#] 3	88.0(2)	S(11)-Mn(5)-S(9)#15	92.15(17)
S(7)-Mn(3)-S(3)	100.83(17)	$S(4)^{#}3-Mn(5)-S(9)^{#}15$	85.96(16)
S(7) [#] 6-Mn(3)-S(3)	100.83(17)	$S(4)^{\#7}-Mn(5)-S(9)^{\#15}$	85.96(16)
S(8) [#] 6-Mn(3)-S(3)	79.78(18)	S(11) [#] 6-Mn(5)-S(5) [#] 3	100.02(17)
S(8)-Mn(3)-S(3)	79.77(18)	S(11)-Mn(5)-S(5) [#] 3	100.02(17)
S(5) [#] 3-Mn(3)-S(3)	162.7(3)	$S(4)^{\#}3-Mn(5)-S(5)^{\#}3$	81.54(16)
S(7)-Mn(4)-S(7) [#] 1	94.2(3)	$S(4)^{\#}7-Mn(5)-S(5)^{\#}3$	81.54(16)
S(7)-Mn(4)-S(6) [#] 3	92.16(19)	S(9) [#] 15-Mn(5)-S(5) [#] 3	161.9(3)
S(7) [#] 1-Mn(4)-S(6) [#] 3	92.16(19)	S(11)-Mn(6)-S(11)#19	95.0(2)
S(7)-Mn(4)-S(8) [#] 6	87.63(13)	S(11)-Mn(6)-S(4)#7	87.02(13)
S(7) [#] 1-Mn(4)-S(8) [#] 6	178.13(18)	S(11)#19-Mn(6)-S(4)#7	177.90(19)
S(6)#3-Mn(4)-S(8)#6	87.85(19)	S(11)-Mn(6)-S(4)#24	177.90(19)
S(7)-Mn(4)-S(8)#23	178.13(18)	S(11)#19-Mn(6)-S(4)#24	87.02(13)
S(7) [#] 1-Mn(4)-S(8) [#] 23	87.63(13)	S(4) [#] 7-Mn(6)-S(4) [#] 24	90.94(19)
S(6)#3-Mn(4)-S(8)#23	87.85(19)	S(11)-Mn(6)-S(10)#15	93.09(17)
S(8)#6-Mn(4)-S(8)#23	90.50(19)	S(11)#19-Mn(6)-S(10)#15	93.09(17)
S(7)-Mn(4)-S(2)	100.07(17)	S(4) [#] 7-Mn(6)-S(10) [#] 15	86.28(17)
$S(7)^{#1}-Mn(4)-S(2)$	100.07(17)	S(4) [#] 24-Mn(6)-S(10) [#] 15	86.28(17)
S(6) [#] 3-Mn(4)-S(2)	161.9(3)	S(11)-Mn(6)-S(6)#24	99.07(17)
S(8) [#] 6-Mn(4)-S(2)	79.49(18)	S(11)#19-Mn(6)-S(6)#24	99.07(17)
S(8) [#] 23-Mn(4)-S(2)	79.49(18)	S(4) [#] 7-Mn(6)-S(6) [#] 24	81.10(16)
S(11) [#] 6-Mn(5)-S(11)	95.2(2)	S(4) [#] 24-Mn(6)-S(6) [#] 24	81.10(16)
S(11) [#] 6-Mn(5)-S(4) [#] 3	86.10(13)	S(10)#15-Mn(6)-S(6)#24	161.9(3)

*1 x,y,-z+2 *2 -y+1,x-y+1,-z+2 *3 -y+1,x-y+1,z
*4 -x+y,-x+1,-z+2 *5 -x+y,-x+1,z *6 x,y,-z+1
*7 -y+1,x-y+1,-z+1 *8 -x+y,-x+1,-z+1 *9 -y,x-y,z
*10 -x+y,-x,-z+2 *11 -y,x-y,-z+2 *12 -x+y,-x,z
*13 -y,x-y,-z+1 *14 -x+y,-x,-z+1 *15 -x+y+1,-x+1,z
*16 -y+1,x-y,-z *17 -x+y+1,-x+1,-z *18 -y+1,x-y,z
*19 x,y,-z *20 -x+y+1,-x+1,-z+1 *21 -y+1,x-y,-z+1
*22 -y,x-y,z+1 *23 x,y,z+1 *24 -y+1,x-y+1,z-1
*25 -x+y,-x+1,z+1 *26 x,y,z-1 *27 -x+y,-x,z-1

1111110 540510 (11	· cu, 51, 5u, 1 t		Jus /, 120011.				c cu, 51, 1	<i>Duj</i> .		
Compounds	Octahedral	Bond			1/	Å			L/Å	$\Delta d\%$
	$Mn(1)S_6$	Mn-S	2.534	2.534	2.604	2.669	2.73	2.73	2.6335	0.676%
	$Mn(2)S_6$	Mn-S	2.53	2.53	2.626	2.675	2.703	2.703	2.6278	0.545%
CaMn ₆ Ga ₆ S ₁₆	$Mn(3)S_6$	Mn-S	2.556	2.556	2.612	2.612	2.655	2.67	2.6101	0.191%
	$Mn(4)S_6$	Mn-S	2.556	2.556	2.598	2.659	2.659	2.709	2.6228	0.327%
	$Mn(5)S_6$	Mn-S	2.523	2.523	2.576	2.624	2.624	2.797	2.6111	0.861%
	$Mn(6)S_6$	Mn-S	2.516	2.516	2.588	2.588	2.657	2.73	2.5991	0.578%
	$Mn(1)S_6$	Mn-S	2.518	2.518	2.582	2.582	2.703	2.755	2.6096	0.803%
	$Mn(2)S_6$	Mn-S	2.501	2.501	2.598	2.611	2.611	2.818	2.6066	1.120%
SrMn ₆ Ga ₆ S ₁₆	$Mn(3)S_6$	Mn-S	2.544	2.544	2.611	2.611	2.679	2.699	2.6146	0.354%
	$Mn(4)S_6$	Mn-S	2.522	2.522	2.651	2.697	2.707	2.707	2.6343	0.667%
	$Mn(5)S_6$	Mn-S	2.531	2.531	2.602	2.653	2.653	2.728	2.6163	0.499%
	$Mn(6)S_6$	Mn-S	2.514	2.514	2.628	2.68	2.723	2.723	2.6303	0.779%
	$Mn(1)S_6$	Mn-S	2.527	2.527	2.632	2.632	2.653	2.719	2.6150	0.472%
	$Mn(2)S_6$	Mn-S	2.505	2.505	2.607	2.707	2.723	2.723	2.6283	0.917%
BaMn ₆ Ga ₆ S ₁₆	$Mn(3)S_6$	Mn-S	2.495	2.495	2.685	2.707	2.707	2.744	2.6388	1.064%
	$Mn(4)S_6$	Mn-S	2.506	2.506	2.617	2.64	2.64	2.84	2.6248	1.251%
	$Mn(5)S_6$	Mn-S	2.505	2.505	2.573	2.573	2.744	2.808	2.6180	1.359%
	$Mn(6)S_6$	Mn-S	2.481	2.481	2.608	2.608	2.649	2.849	2.6126	1.531%
	$Mn(1)S_6$	Mn-S	2.528	2.528	2.639	2.653	2.719	2.719	2.6310	0.621%
	$Mn(2)S_6$	Mn-S	2.524	2.524	2.644	2.656	2.689	2.689	2.6210	0.497%
$PbMn_6Ga_6S_{16}$	$Mn(3)S_6$	Mn-S	2.541	2.541	2.607	2.607	2.633	2.694	2.6038	0.282%
	$Mn(4)S_6$	Mn-S	2.545	2.546	2.614	2.648	2.648	2.699	2.6166	0.315%
	$Mn(5)S_6$	Mn-S	2.522	2.522	2.604	2.604	2.639	2.782	2.6121	0.659%
	$Mn(6)S_6$	Mn-S	2.512	2.512	2.57	2.57	2.623	2.785	2.5953	0.865%
La ₃ MnGaS ₇	MnS_6	Mn-S	2.6218	2.6218	2.6218	2.5806	2.5806	2.5806	2.6012	0.042%
La ₆ MnGe ₂ S ₁₄	MnS ₆	Mn-S	2.6417	2.6417	2.6417	2.6794	2.6794	2.6794	2.6606	0.036%
	Mg(1)S6	Mg-S	2.513	2.513	2.558	2.558	2.646	2.729	2.586	0.605%
	$Mg(2)S_6$	Mg-S	2.508	2.508	2.527	2.605	2.605	2.78	2.589	0.899%
CaMg ₆ Ga ₆ S ₁₆	$Mg(3)S_6$	Mg-S	2.534	2.534	2.604	2.604	2.631	2.667	2.596	0.235%
	$Mg(4)S_6$	Mg-S	2.544	2.544	2.582	2.655	2.655	2.701	2.614	0.363%
	$Mg(5)S_6$	Mg-S	2.518	2.518	2.615	2.664	2.681	2.681	2.613	0.498%
	$Mg(_6)S_6$	Mg-S	2.525	2.525	2.596	2.669	2.712	2.712	2.623	0.632%
	$Mg(1)S_6$	Mg-S	2.506	2.506	2.56	2.56	2.678	2.758	2.595	0.863%
	$Mg(2)S_6$	Mg-S	2.499	2.499	2.589	2.589	2.606	2.779	2.594	0.874%

Table S5a. Bond length (1 (Å)), the average bond length (L (Å)) and distortion degree (Δ d) of MnS₆ or MgS₆ octahedra in MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb), La₃MnGaS₇, La₆MnGe₂S₁₄ and AeMg₆Ga₆S₁₆ (Ae=Ca, Sr, Ba).

SrMg ₆ Ga ₆ S ₁₆	$Mg(3)S_6$	Mg-S	2.52	2.52	2.606	2.606	2.661	2.705	2.603	0.459%
	$Mg(4)S_6$	Mg-S	2.524	2.524	2.642	2.642	2.593	2.705	2.605	0.433%
	$Mg(5)S_6$	Mg-S	2.525	2.525	2.678	2.678	2.617	2.714	2.623	0.560%
	$Mg(_{6})S_{6}$	Mg-S	2.496	2.496	2.717	2.717	2.699	2.61	2.623	0.931%
	$Mg(1)S_6$	Mg-S	2.504	2.504	2.552	2.552	2.737	2.757	2.601	1.101%
	$Mg(2)S_6$	Mg-S	2.467	2.467	2.592	2.592	2.63	2.821	2.595	1.418%
BaMg ₆ Ga ₆ S ₁₆	$Mg(3)S_6$	Mg-S	2.507	2.507	2.614	2.614	2.711	2.721	2.612	0.729%
	$Mg(4)S_6$	Mg-S	2.498	2.498	2.632	2.632	2.634	2.72	2.602	0.640%
	$Mg(5)S_6$	Mg-S	2.5	2.5	2.643	2.686	2.686	2.775	2.632	1.020%
	$Mg(_6)S_6$	Mg-S	2.481	2.481	2.637	2.675	2.691	2.691	2.609	0.856%

Table S5b. Bond length (1 (Å)), the average bond length (L (Å)) and distortion degree (Δd) of GaS₄ tetrahedra in MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb), La₃MnGaS₇, LiGaS₂, α -BaGa₄S₇ and AeMg₆Ga₆S₁₆ (Ae=Ca, Sr, Ba).

Compounds	Tetrahedron	Bond		1/.	Å		L/Å	$\Delta d\%$
	$Ga(1)S_4$	Ga-S	2.212	2.229	2.312	2.320	2.2682	0.232%
CaMn ₆ Ga ₆ S ₁₆	$Ga(2)S_4$	Ga-S	2.227	2.275	2.324	2.336	2.2905	0.187%
	$Ga(3)S_4$	Ga-S	2.226	2.275	2.297	2.297	2.2737	0.084%
	$Ga(1)S_4$	Ga-S	2.224	2.269	2.321	2.338	2.2880	0.201%
SrMn ₆ Ga ₆ S ₁₆	$Ga(2)S_4$	Ga-S	2.235	2.284	2.298	2.306	2.2807	0.076%
	$Ga(3)S_4$	Ga-S	2.219	2.299	2.308	2.327	2.2882	0.170%
	$Ga(1)S_4$	Ga-S	2.223	2.298	2.32	2.322	2.2907	0.162%
BaMn ₆ Ga ₆ S ₁₆	$Ga(2)S_4$	Ga-S	2.234	2.287	2.301	2.314	2.2840	0.093%
	$Ga(3)S_4$	Ga-S	2.225	2.26	2.326	2.328	2.2847	0.194%
	$Ga(1)S_4$	Ga-S	2.243	2.28	2.299	2.301	2.2807	0.052%
PbMn ₆ Ga ₆ S ₁₆	$Ga(2)S_4$	Ga-S	2.221	2.297	2.312	2.319	2.2872	0.152%
	$Ga(3)S_4$	Ga-S	2.227	2.268	2.32	2.323	2.2845	0.158%
La ₃ MnGaS ₇	GaS ₄	Ga-S	2.226	2.279	2.279	2.279	2.268	0.052%
	Ga(1)S4	Ga-S	2.223	2.273	2.294	2.295	2.271	0.085%
CaMg ₆ Ga ₆ S ₁₆	Ga(2)S4	Ga-S	2.212	2.29	2.308	2.317	2.282	0.172%
	Ga(3)S4	Ga-S	2.217	2.264	2.312	2.329	2.281	0.191%
	Ga(1)S4	Ga-S	2.224	2.277	2.29	2.216	2.252	0.104%
SrMg ₆ Ga ₆ S ₁₆	Ga(2)S4	Ga-S	2.216	2.289	2.313	2.314	2.283	0.160%
	Ga(3)S4	Ga-S	2.216	2.267	2.313	2.34	2.284	0.222%
	Ga(1)S4	Ga-S	2.223	2.281	2.298	2.301	2.276	0.099%
BaMg ₆ Ga ₆ S ₁₆	Ga(2)S4	Ga-S	2.215	2.294	2.297	2.33	2.284	0.179%
	Ga(3)S4	Ga-S	2.212	2.271	2.326	2.336	2.286	0.245%
LiGaS ₂	GaS4	Ga-S	2.278	2.269	2.28	2.281	2.278	0.002%

α-BaGa ₄ S ₇	Ga(1)S4	Ga-S	2.338	2.325	2.229	2.229	2.281	0.268%
	Ga(2)S4	Ga-S	2.256	2.271	2.324	2.247	2.275	0.089%

Compounds	Small size	Medium size	Maximum size
AgMg ₃ Ga ₃ S ₈	5.9974	6.1638	6.1966
LiMg ₃ Ga ₃ S ₈	6.4100	6.4286	6.5322
NaMg ₃ Ga ₃ S ₈	6.4873	6.5144	6.6227
CaMg ₆ Ga ₆ S ₁₆	6.5402	6.5556	6.6681
CaMn ₆ Ga ₆ S ₁₆	6.5438	6.5642	6.6841

Table S6. The diameters of three size of channels in compounds

Figure S1. Experimental and simulated powder X-ray diffraction patterns of compounds $SrMn_6Ga_6S_{16}(a)$, $BaMn_6Ga_6S_{16}(b)$ and $PbMn_6Ga_6S_{16}(c)$.

Figure S2. The UV-vis-NIR diffuse reflectance spectra for MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb).

Figure S3. (a-c) The original interference color, extinction, and thickness of the SrMn₆Ga₆S₁₆ crystal, respectively; (d-f) The original interference color, extinction, and thickness of the BaMn₆Ga₆S₁₆ crystal, respectively; (g-i) The original interference color, extinction, and thickness of the PbMn₆Ga₆S₁₆ crystal, respectively.

Figure S4. The arrangement of GaS₄ tetrahedra in the structure of MMn₆Ga₆S₁₆ (M=Ca, Sr, Ba, Pb).

Figure S5. The magnetization curve of $CaMn_6Ga_6S_{16}(a)$, $SrMn_6Ga_6S_{16}(c)$, $BaMn_6Ga_6S_{16}(e)$ and $PbMn_6Ga_6S_{16}(g)$ under zero-field-cooling (ZFC) and field cooling (FC). b d f h) shows the plots of inverse of susceptibility($1/\chi$) versus temperature (T).

Figure S6. The arrangement of A-site cations in compounds NaMg3Ga3S8, CaMn6Ga6S16 and BaMn6Ga6S16.