Electronic Supplementary Information

Fabrication of high-surface-area mesoporous frameworks of β -Ni(OH)₂-CdIn₂S₄ p-n nano-heterojunctions for improved visible light photocatalytic hydrogen production

Evangelos K. Andreou, Ioannis Vamvasakis and Gerasimos S. Armatas* Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece

*E-mail: garmatas@materials.uoc.gr

Supporting Tables

Sample	Cd (at%)	In (at%)	S (at%)	Ni (at%)	Ni loading ^{a)} (wt%)
CIS NCFs	15.50	29.90	54.60	-	-
5-Ni/CIS NCFs	15.13	27.30	50.63	6.94	5.40
7-Ni/CIS NCFs	14.12	28.10	48.98	8.80	7.22
10-Ni/CIS NCFs	13.00	26.74	48.65	11.61	10.02
15-Ni/CIS NCFs	12.67	24.86	44.40	18.07	15.11
10-Ni/CIS-m	13.07	26.68	48.33	11.92	10.20

Table S1. Elemental composition of mesoporous CIS and Ni-modified CIS NCFs, and 10% Ni-modified CIS microparticles.

^{a)} Based on the EDS Ni to Cd atomic ratio.

 Table S2. Photocatalytic efficiency comparison of several thiospinel-based photocatalysts.

	Reaction	I : 1 4 S	H ₂ evo	lution rate	Quantum Efficiency (QE)	Ref.
Photocatalyst	Conditions	Light Source	(µmol h ⁻¹)	(µmol g ⁻¹ h ⁻¹)		
$\begin{array}{c} 3 \text{ wt.\% Pt/5 wt.\% Co}_9S_8 / \\ CdIn_2S_4 \end{array}$	50 mg catalyst, 20% v/v TEOA	300 W Xe lamp (λ≥420 nm)	54	1083.6	5.5% at 420 nm	1
CdIn ₂ S ₄ @CoAl-LDH	2 mg catalyst, 10% v/v TEOA	300 W Xe lamp (λ≥420 nm)	1.6	793.4	0.2% at 450 nm	2
CdIn ₂ S ₄ /In(OH) ₃ /Zn ₂ GeO ₄	50 mg catalyst, 0.35 M Na ₂ S, 0.25 M Na ₂ SO ₃	300 W Xe lamp (λ≥420 nm)	71	1426.90	9.1% at 420 nm	3
1 wt.% MoS ₂ / CdIn ₂ S ₄	50 mg catalyst, 0.35 M Na ₂ S, 0.25 M Na ₂ SO ₃	300 W Xe lamp (λ≥420 nm)	47.3	2365	5.2% at 400 nm	4
CdIn ₂ S ₄ /In(OH) ₃ /NiCr- LDH	50 mg catalyst, 0.35 M Na ₂ S, 0.25 M Na ₂ SO ₃	300 W Xe lamp (λ≥420 nm)	54.65	1093	1.7% at 420 nm	5
CdIn ₂ S ₄ /rGO/ZnS QDs	50 mg catalyst, 6% v/v TEOA	300 W Xe lamp (λ≥420 nm)	341	6820	19.3% at 430 nm	6
CdIn ₂ S ₄ /CNFs/Co ₄ S ₃	50 mg catalyst, 20% v/v lactic acid	300 W Xe lamp (λ≥420 nm)	1293.5	25870	16.3% at 420 nm	7
CdIn ₂ S ₄ /ZnS	20 mg catalyst, 0.35 M Na ₂ S, 0.25 M Na ₂ SO ₃	300 W Xe lamp	74.8	3743	2.2% at 365 nm	8
CdIn ₂ S ₄ /ZnIn ₂ S ₄	4 mg catalyst, 0.35 M Na ₂ S, 0.25 M Na ₂ SO ₃	300 W Xe lamp (λ≥420 nm)	50.7	12670	18.7% at 420 nm	9
Co-Pi/CdIn ₂ S ₄	10 mg catalyst, 20% v/v MeOH	500 W Xe lamp (λ≥420 nm)	72.8	7280	14.1% at 405 nm	10
Ni ₁₂ P ₅ /CdIn ₂ S ₄	30 mg catalyst, 10% v/v TEOA	300 W Xe lamp (λ≥420 nm)	150.3	5010	23.5% at 400 nm	11
Ni ₂ P/ZnIn ₂ S ₄	50 mg catalyst, 10% v/v lactic acid	300 W Xe lamp (λ>400 nm)	103.3	2066	7.7% at 420 nm	12
CoP/ZnIn ₂ S ₄	20 mg catalyst, 0.35 M Na ₂ S, 0.25 M Na ₂ SO ₃	300 W Xe lamp (λ≥420 nm)	175.5	8775	24.1% at 420 nm	13
Pt/Cu ₃ P/ZnIn ₂ S ₄	$\begin{array}{c} 50 \text{ mg catalyst,} \\ 0.35 \text{ M Na}_2\text{S,} \end{array}$	300 W Xe lamp (λ≥420 nm)	128	2561	22.3% at 420 nm	14

	0.25 M Na ₂ SO ₃					
Ni ₁₂ P ₅ /ZnIn ₂ S ₄	50 mg catalyst, 0.35 M Na ₂ S, 0.25 M Na ₂ SO ₃	300 W Xe lamp (λ≥420 nm)	113	2263	20.5% at 420 nm	15
CoP@ZnIn ₂ S ₄	10 mg catalyst, 10% v/v TEOA	300 W Xe lamp (λ≥420 nm	103	10300	16.2% at 420 nm	16
15 wt.% Ni ₂ P/CdIn ₂ S ₄	20 mg catalyst, 10% v/v TEOA	300 W Xe lamp (λ≥420 nm)	586	29300	61.7% at 420 nm	17
10 wt.% β-Ni(OH) ₂ / CdIn ₂ S ₄	20 mg catalyst, 10% v/v TEOA	300 W Xe lamp (λ≥420 nm)	395	19750	52.0 % at 420 nm	This work

 Table S3. Nyquist equivalent circuit fitted parameters of the prepared materials.

Sample	$\mathrm{R_{s}}\left(\Omega ight)$	C _{dl} (F)	$R_{ct}(\Omega)$	x ²
CIS NCFs	12.46	46 ×10 ⁻⁶	565	3.60 ×10 ⁻³
5-Ni/CIS NCFs	14.72	185 ×10 ⁻⁶	346	1.95 ×10 ⁻⁴
7-Ni/CIS NCFs	13.51	195 ×10-6	265	3.06 ×10 ⁻³
10-Ni/CIS NCFs	12.19	144 ×10 ⁻⁶	238	4.16 ×10 ⁻³
15-Ni/CIS NCFs	12.70	221 ×10 ⁻⁶	373	2.16 ×10 ⁻³
10-Ni/CIS- <i>m</i>	13.79	58 ×10 ⁻⁶	1104	3.53 ×10 ⁻³
β -Ni(OH) ₂	13.36	39 ×10 ⁻⁶	3437	3.13 ×10 ⁻³

Supporting Figures

Fig. S1 Typical EDS spectra of the mesoporous CIS and Ni-modified CIS NCFs materials.

Fig. S2 XRD patterns of the as-prepared 30 wt.% Ni-loaded CIS (30-Ni/CIS NCFs) and isolated β -Ni(OH)₂ microparticles. The diffraction peaks at $2\theta = 33^{\circ}$ and 59° scattering angles (marked with symbol *) in the XDR pattern of 30-Ni/CIS NCFs can be attributed to the (100) and (110) reflections of the hexagonal β -Ni(OH)₂ structure. The XRD pattern of the as-prepared β -Ni(OH)₂ microparticles is consistent with the standard diffraction pattern of hexagonal β -Ni(OH)₂ (JCPDS card no. 14-0117).

Fig. S3 Typical XPS core-level spectra of the (a) Cd 3d, (b) In 3d, (c) S 2p, and (b) Ni 2p and O 1s (inset) regions of mesoporous CIS and 10-Ni/CIS NCFs catalysts.

Fig. S4 EDS elemental mapping of 10-Ni/CIS NCFs catalyst. The homogeneous distribution of Ni atoms (green spots in the lower-right panel) on the surface of the catalyst is also depicted.

Fig. S5 Nitrogen adsorption (filled cycles) and desorption (open cycles) isotherms at -196 °C for the Ni-modified CIS samples with 5, 7 and 15 wt.% Ni content. Insets: The corresponding NLDFT pore-size distribution plots derived from the adsorption isotherms.

Fig. S6 UV-vis spectrum of bulk CIS. Inset: the corresponding Kubelka-Munk plot showing an energy bandgap of 2.36 eV.

Fig. S7 UV-vis/NIR spectrum of the as-prepared β -Ni(OH)₂ microparticles, showing the characteristic d-d interband transitions at ~385, ~670 and ~1120 nm. The steep absorption bellow 350 nm corresponding to the band-gap transition. Inset: the corresponding Tauc plot for direct band gap semiconductor, showing an energy bandgap of ~3.65 eV.

Fig. S8 Typical (a) XRD pattern and (b) EDS spectrum of bulk 10-Ni/CIS-*m*. In panel (a), the blue lines correspond to the standard diffraction of cubic $CdIn_2S_4$ (space group: Fd3m), according to JCPDS card no. 27-0060. The EDS data give a Ni content of 10.2 wt.%.

Fig. S9 Nitrogen adsorption (filled cycles) and desorption (open cycles) isotherms at -196 °C for the bulk 10-Ni/CIS-*m* reference material.

Fig. S10 Hydrogen evolution activity of the 10-Ni-CIS NCFs photocatalyst, using different sacrificial reagents: methanol (MeOH, 10% v/v), ethanol (EtOH, 10% v/v), triethylamine (TEA, 10% v/v), 5M NaOH/Ethanol (EtOH, 10% v/v) and triethanolamine (TEOA, 10% v/v). Reaction conditions: 20 mg of photocatalyst was dispersed in a 20 mL aqueous solution containing the respective hole scavenger, 300-W Xe-lamp equipped with a UV-cut off filter ($\lambda \ge 420$ nm).

Fig. S11 Hydrogen evolution activity of 10-Ni-CIS NCFs photocatalysts, using different catalyst loading. Reaction conditions: 10-40 mg of catalyst was dispersed in a 20 mL aqueous solution of TEOA (10% v/v), 300-W Xe-lamp equipped with a UV-cut off filter ($\lambda \ge 420$ nm).

Fig. S12 Typical EDS spectrum of the reused 10-Ni/CIS NCFs catalyst. The EDS analysis gives a 9.95 wt.% Ni content.

Fig. S13 Reduced atomic pair distribution function G(r) plots of the 10-Ni/CIS NCFs before and after photocatalysis. The reused 10-Ni/CIS NCFs catalyst exhibits a PDF profile nearly identical to that of the fresh sample, indicating a similar atomic structure.

Fig. S14 Typical XPS spectra of a) Cd 3d, b) In 3d, c) S 2p and d) Ni 2p of the 10-Ni/CIS NFAs photocatalyst after four-five hours catalytic runs.

The Cd 3d XPS spectrum of the reused photocatalyst (10-Ni/CIS NCFs) shows a doublet peak at 405.1 and 411.9 eV, corresponding to the Cd $3d_{5/2}$ and Cd $3d_{3/2}$ spin-orbits of Cd²⁺, respectively. Meanwhile, the In 3d XPS spectrum reveals photoelectron signals attributed to the In $3d_{5/2}$ (445.0 eV) and In $3d_{3/2}$ (452.5 eV) spin-orbit components of In³⁺ cations in CdIn₂S₄. In the S 2p XPS spectrum, the signal at 161.9 eV corresponds to the S²⁻ valence state, whereas the broad peak at 168.8 eV arises from surface

 SO_x species. In the Ni 2p XPS region, two prominent peaks of Ni $2p_{3/2}$ and Ni $2p_{1/2}$ are observed at 856.1 and 873.9 eV, respectively, attributed to Ni²⁺ cations in Ni(OH)₂. Additionally, the presence of strong satellite signals at 861.9 and 879.7 eV further confirms the paramagnetic nature of Ni(II).

Fig. S15 N₂ adsorption and desorption isotherms at -196 °C of the 10-Ni/CIS NCFs catalyst after 20 h photocatalytic test. Analysis of the adsorption data gives a surface area of 133 m² g⁻¹, a total pore volume of 0.1 cm³ g⁻¹ and an average pore width of 4.0 nm.

Fig. S16 Mott-Schottky plot for the as-prepared β -Ni(OH)₂ microparticles. The linear fit to the data (dashed line) gives a E_{FB} of ~1.30 V (vs RHE) at pH 7, while the positive slope indicates p-type conductivity. Given an energy bandgap of 3.65 eV, the conduction band energy (E_C) of β -Ni(OH)₂ was calculated as -2.35 V (vs RHE) at pH 7.

Fig. S17 Mott-Schottky plot for the bulk CIS. The linear fit to the date (red dashed line) gives a E_{FB} of -0.77 V (vs RHE) at pH 7 and a donor concentration (N_D) of $\sim 6.6 \times 10^{17}$ cm⁻³.

Fig. S18 Nyquist plot (Inset: equivalent circuit model used to fit the EIS data) of the β -Ni(OH)₂ microparticles. The red line is fit of the experimental data. The fitting analysis yielded a charge-transfer resistance (R_{et}) of 3437 ohm.

Fig. S19 Room temperature PL emission spectra of the mesoporous CIS and 10-Ni/CIS NCFs. PL experiments were carried out in water (1 mg mL^{-1}) under 375 nm excitation wavelength.

Fig. S20 Contact angle measurements of the mesoporous (a) CIS and (b) 10-Ni/CIS NCFs, and (c) bulk 10-Ni/CIS-*m*. The diameter of the water droplet was approximately 2 nm.

References

- (1) C. Li, Y. Zhao, X. Liu, P. Huo, Y. Yan, L. Wang, G. Liao and C. Liu, *J. Colloid Interface Sci.*, 2021, **600**, 794–803.
- (2) L. Peng, C. Yu, Y. Ma, G. Xie, X. Xie, Z. Wu and N. Zhang, *Inorg. Chem. Front.*, 2022, 9, 994–1005.
- (3) X. Li, X. Yan, N. Zhao, J. Zhao, B. Lu, X. Zhang, X. Zhang and H. Yu, *J. Photochem. Photobiol. A*, 2018, **360**, 298–305.
- (4) Y. T. Prabhu, R. Kumari, A. Gautam, B. Sreedhar and U. Pal, *Nano-Structures & Nano-Objects*, 2021, **26**, 100682.
- (5) R. Fu, Y. Gong, C. Li, L. Niu and X. Liu, *Nanomaterials*, 2021, 11, 3122.
- (6) C. Xue, H. An, X. Yan, J. Li, B. Yang, J. Wei and G. Yang, *Nano Energy*, 2017, **39**, 513–523.
- (7) S. Guo, Y. Li, C. Xue, Y. Sun, C. Wu, G. Shao and P. Zhang, *Chem. Eng. J.*, 2021, **419**, 129213.
- (8) L. Xie, G. Liu, R. Suo, Z. Xie, H. Liu, J. Chen, J. Chen and C.-Z. Lu, J. Alloys Compd., 2023, 948, 169692.
- (9) X. Dang, M. Xie, F. Dai, J. Guo, J. Liu and X. Lu, J. Mater. Chem. A, 2021, 9, 14888–14896.
- (10) J. Xu, Q. Li, D. Sui, W. Jiang, F. Liu, X. Gu, Y. Zhao, P. Ying, L. Mao, X. Cai and J. Zhang, *Nanomaterials*, 2023, **13**, 420.
- (11) W. Yang, S. S. Xu, Y. Niu, Y. Zhang and J. Xu, J. Phys. Chem. C, 2023, 127, 4853–486.
- (12) X. Li Li, X. J. Wang, J. Y. Zhu, Y. P. Li, J. Zhao and F. T. Li, Chem. Eng. J., 2018, 353, 15– 24.
- (13) Z. Xiang, H. Guan, B. Zhang and Y. Zhao, J. Am. Ceram. Soc., 2021, 104, 504–513.
- (14) Z. Yang, L. Shao, L. Wang, X. Xia, Y. Liu, S. Cheng, C. Yang and S. Li, *Int. J. Hydrogen Energy*, 2020, 45, 14334–14346.
- (15) D. Zeng, Z. Lu, X. Gao, B. Wu and W. J. Ong, Catal. Sci. Technol., 2019, 9, 4010–4016.
- (16) B. Wu, N. Liu, L. Lu, R. Zhang, R. Zhang, W. Shi and P. Cheng, *Chem. Commun.*, 2022, **58**, 6622–6625.
- (17) E. K. Andreou, I. Vamvasakis and G. S. Armatas, Adv. Mater. Interfaces, 2024, 11, 2300994.