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Figure S1. XPS for prepared materials and fine spectra of Zn and Sn. 
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Figure S2. SEM images of Zn, ZnSn-0.05, ZnSn-0.1, and ZnSn-0.5.
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Figure S3. TEM image for ZnSn-0.05.
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Figure S4. EDS for ZnSn-0.05 electrocatalyst.
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Figure S5. EDS for ZnSn-0.5 electrocatalyst.
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Figure S6. LSV curves of a series of Sn doped Zn materials saturated in CO2 and Ar in 0.5 M 

KHCO3 solution.
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Figure S7. FE for Zn electrocatalyst toward CO2RR. 
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Figure S8. (a) FEs for ZnSn-0.1 and (b) ZnSn-0.5.
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Figure S9. FEs for H2, CO and HCOOH formation on prepared catalysts with different content 

of Sn.
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Figure S10. The comparison of corresponding HCOOH partial current density at maximum 

FE among various reported Zn-based electrocatalysts.
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Figure S11. XRD pattern for ZnSn-0.05 before and after long-term electrolysis at at -0.88 V 

vs. RHE.
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Figure S12. SEM image for ZnSn-0.05 after long-term electrolysis.
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Figure S13. (a) Double-layer capacitance (Cdl) values for Zn, ZnSn-0.05, ZnSn-0.1, and ZnSn-

0.5, (b) Tafel plot for producing HCOO-, and (c) Nyquist plots for EIS analysis of ZnSn-0.05 

and Zn.
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Figure S14. LSV curves for Zn and ZnSn-0.05 in 1 M KOH solution towards OER. 
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Figure S15. Single oxidative LSV scans in N2-saturated 0.1 M NaOH solution of Zn and ZnSn.
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Figure S16. Free energy of CO2RR into HCOOH/CO on Zn (002).
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Table S1. Comparison of the activities Zn-based catalysts toward formate production

Catalysts Electrolyte Potential (V vs RHE) FE 
(%)

Stability
(h)

Content of doping
element (%)

Current density
(mA cm-2)

Mass activity
(mA mgdoping

-1)
Mass FE 

(% mgdoping
-1)

ZnSn-0.05[this work] 0.5 M KHCO3 -0.98 80 21 Sn-0.27 30 111.11 296.30

ZnCu@Cu[1] 0.5 M KHCO3 -1.25 48.6 12 - 30 - -

Zn3Sn2
[2] 0.5 M KHCO3 -1.1 96.7 12 Sn-39 30 0.76 2.47

ZnPb[3] 0.1M KHCO3 -1.0 95 8 Pb-0.7 20 28.5 135.71

ZnBi3
[4] 0.1 M KHCO3 -0.8 94 7 - 3.8 - -

Sn56.3Pb43.7
[5] 0.5 M KHCO3 -1.4 80 none - 56.25 - -

ZnIn2S4
[6] 0.1 M KHCO3 -1.2 91 10 - 4.5 - -

Zn0.95In0.05
[7] 0.5 M KHCO3 -1.2 95 1 In-8 22 2.75 11.875

Oxide-derived Sn-Pb-Sb[8] 0.1 M KHCO3 -1.4 91 1.5 - 10 - -

Sn-ZnO[9] 0.5 M KHCO3 -1.2 80 11 Sn-1.02 60 58.8 78.43
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Table S2. Carbon conversion efficiency (CCE) of prepared materials at -0.98 V vs RHE.

Sample Zn ZnSn-0.05 ZnSn-0.1 ZnSn-0.5

CCE 2.8% 3.3% 3.4% 3.4%

According to reported work [10], carbon conversion efficiency (CCE) towards CO2RR 

was calculated as a ratio of the molar amount of carbon following this equation: 

𝐶𝐶𝐸 =
𝑛(𝐶𝑂) + 𝑛(𝐻𝐶𝑂𝑂𝐻)

𝑛(𝐶𝑂2) + 𝑛(𝑇𝐼𝐶)
∗ 100%

: obtained from GC𝑛(𝐶𝑂)

 obtained from HPLC𝑛(𝐻𝐶𝑂𝑂𝐻):

𝑛(𝐶𝑂2) =
𝑝𝑉
𝑅𝑇

: 1 bar  𝑝

R: 0.083144598 L bar mol-1 K-1

V= v*t 

v=20 mL/min

TIC: total inorganic carbon. In our work: TIC= 12 mmol and n(CO2)= 7.5 mmol
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Table S3. EE of the aqueous rechargeable Zn-CO2 electrochemical cell
Current
(mA)

Discharg
e voltage 
(V)

FE of 
CO2 to
HCOOH

FE of 
CO2 
to
CO

Charge 
voltage 
(V)

FE of 
H2O 
H2+1/2O2

EE1 EE2

0.5 0.3316 58% 20% 2.44 10% 56.15% 61.5%
1 0.3196 60% 23% 2.5 8% 57.06% 61.19%
1.5 0.302 61% 23% 2.57 8% 55.19% 59.34%
2 0.2826 63% 26% 2.64 7% 55.65% 59.19%

Note: EE1 is calculated based on CO2 splitting in the cell, EE2 is calculated when water 

splitting is also accounted for.

According to reported work [11], the energy efficiency (EE) of the cell calculated as follows: 

𝐸𝐸1 =
∆𝐺𝑜𝑢𝑡𝑝𝑢𝑡

∆𝐺𝑖𝑛𝑝𝑢𝑡
=

𝑛𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝐹 + 𝐹𝐸𝐶𝑂 + 𝐻𝐶𝑂𝑂𝐻 ∗ ∆𝐺𝐶𝑂2 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔

𝑛𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝐹

𝐸𝐸2 =
∆𝐺𝑜𝑢𝑡𝑝𝑢𝑡

∆𝐺𝑖𝑛𝑝𝑢𝑡
=

𝑛𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝐹 + 𝐹𝐸𝐶𝑂 + 𝐻𝐶𝑂𝑂𝐻 ∗ ∆𝐺𝐶𝑂2 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 + 𝐸𝐻2 ∗ ∆𝐺𝐻2𝑂 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔

𝑛𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝐹

∆𝐺𝐻2𝑂 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 = 257.38 𝐾𝐽 𝑚𝑜𝑙 ‒ 1

∆𝐺𝐶𝑂2 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 = 257.38 𝐾𝐽 𝑚𝑜𝑙 ‒ 1
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Table S4. The atomic model of SnZn and Zn. Blue: Zn atoms; Yellow: Sn atoms; Red: H 
atoms; write: O atoms; grey: C atoms.
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