Supporting Information

Tunable luminescence based on structural regulation in Organic Antimony Halides for X-ray Scintillation

Sijun Cao^a, Yijia Wang^a, Jun'an Lai^{a*}, Kang An^b, Mengyue Wu^c, Peng Feng^a, Peng He^{a*} and Xiaosheng Tang^{c*}

^a Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China

^b ICT NDT Engineering Research Center, Ministry of Education, Chongqing University, Chongqing 400044, China.

^c College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China

* Corresponding author E-mail: ja.lai@cqu.edu.cn (J. Lai), penghe@cqu.edu.cn (P. He), xstang@cqu.edu.cn (X. Tang).

Fig.S1 Scanning electron microscope images of (NYP)₂SbCl₅ crystals. EDS mapping images of carbon, phosphorus, chlorine and antimony.

Fig.S2 Scanning electron microscope images of (NYP)₂Sb₂Cl₈ crystals. EDS mapping images of carbon, phosphorus, chlorine and antimony.

Fig.S3 The XPS spectra of (a, b) all-scan, (c, d) Sb-3d, (e, f) Cl-2p.

Fig.S4 Emission spectra (a) and excitation spectra (b) of $(NYP)_2SbCl_5$ at different excitation wavelengths. Emission spectra (c) and Excitation spectra (d) of $(NYP)_2Sb_2Cl_8$ at different excitation wavelengths.

Fig.S5 (a) The PL excitation spectrum of NYPCl with an emission wavelength of 430 nm. (b) The PL spectrums of NYPCl (Excitation wavelengths of 242 and 365 nm) and $(NYP)_2Sb_2Cl_8$.

Fig.S6 The PLQY of (a) $(NYP)_2SbCl_5$ ($\lambda_{ex} = 365$ nm) and (b) $(NYP)_2Sb_2Cl_8$ ($\lambda_{ex} = 355$ nm).

Fig.S7 The time decay curves of $(NYP)_2SbCl_5$ at 320 nm excitation, 460 nm emission.

Fig.S8 (a-d) The time decay curves of $(NYP)_2Sb_2Cl_8$ at 354 nm excitation with different emissions.

Fig.S9 Temperature-dependent decay curves of (a) $(NYP)_2SbCl_5$ and (b) $(NYP)_2Sb_2Cl_8$ from 80 to 290 K.

Fig.S10 The Absorption spectra of (NYP)₂SbCl₅ and (NYP)₂Sb₂Cl₈.

Fig.S11 Isosurface plots of charge density corresponding to (a) LUMO and (b) HOMO of (NYP)₂Sb₂Cl₈. Charge distribution maps of NYP at (c) low and (d) high isosurface levels.

Fig.S12 The PXRD spectra of (a) (NYP)₂SbCl₅ and (b) (NYP)₂Sb₂Cl₈ after

3 and 6 months of storage in ambient atmosphere.

Fig.S13 The thermogravimetry analysis of $(NYP)_2SbCl_5$ and $(NYP)_2Sb_2Cl_8$.

Fig.S14 (a) Schematic of the RL intensity measurement testing system. (b) Output spectra at different tube voltages of Mini-X X-ray tube (target: Ag, the characteristic peak is at 22 keV). (c) Calculated X-ray attenuation efficiency spectra of GAGG, LuAG, and $(NYP)_2SbCl_5$ at the thickness of 400 μ m.

Fig.S15 The PL and RL of (NYP)₂SbCl₅.

Fig.S16 The radiation stability of (NYP)₂SbCl₅.

Fig.S17 The UV-emitting pictures of scintillating screens at different bending angles.

Fig.S18 (a) SEM and (a) detailed images of the scintillating film based on (NYP)₂SbCl₅.

Fig.S19 The imaging picture of the D12 (7.7 lp/mm) line pair extracted from the line pair card.

Fig.S20 Gray value profiles of the line pair D12 (7.7 lp/mm) extracted from the line pair card.

Empirical formula	C58 H48 Cl5 P2 Sb
Formula weight	1105.90
Temperature	296.15 K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P21
Unit cell dimensions	a = 10.0922(19) Å $a = 90$ °. $b = 21.053(4)$ Å $b = 90$ °. $c = 27.752(6)$ Å $g = 90$ °.
Volume	5896(2) Å ³
Ζ	4
Density (calculated)	1.246 g/cm ³
Absorption coefficient	0.782 mm ⁻¹
F(000)	2248.0
Theta range for data collection	2.542 to 25.019°.
Index ranges	-12<=h<=12, -25<=k<=21, - 32<=l<=32
Reflections collected	92143
Independent reflections	10367 [R(int) = 0.1035]
Completeness to theta = 25.115°	99.8 %
Data / restraints / parameters	10367 / 1193 / 782
Goodness-of-fit on F ²	1.040
Final R indices [I>2sigma(I)]	R1 = 0.0542, wR2 = 0.1094
R indices (all data)	R1 = 0.1082, wR2 = 0.1294
Largest diff. peak and hole	0.613 and -0.375 e.Å ⁻³

 Table S1. Crystal data and structure refinement for (NYP)2SbCl5.

Atom	Length/Å	Atom	Length/Å	Atom	Length/Å	Atom	Length/Å
Sb(01)-Cl(03)	2.629(3)	С(015)-Н(015)	0.93	C(01B)-H(01B)	0.93	С(15А)-Н(15А)	0.93
Sb(01)-Cl(04)	2.631(3)	C(015)-C(01F)	1.39	C(01C)-H(01E)	0.93	C(15A)-C(14A)	1.39
Sb(01)-Cl(05)	2.368(3)	C(01F)-H(01F)	0.93	C(01C)-C(01R)	1.34(3)	C(14A)-H(14A)	0.93
Sb(01)-Cl(06)	2.585(3)	C(01F)-C(01L)	1.39	C(01H)-H(01A)	0.97	C(14A)-C(13A)	1.39
Sb(01)-Cl(07)	2.592(3)	C(01L)-H(01L)	0.93	C(01H)-H(01C)	0.97	С(13А)-Н(13А)	0.93
P(002)-C(009)	1.781(10)	C(01L)-C(01I)	1.39	C(01H)-C(1B)	1.57(3)	C(13A)-C(10A)	1.39
P(002)-C(00H)	1.783(11)	C(01I)-C(01A)	1.39	C(01R)-H(01R)	0.93	C(10A)-H(10A)	0.93
P(002)-C(00J)	1.819(9)	C(01I)-C(01C)	1.47(3)	C(01R)-C(39)	1.29(3)	C(10A)-C(01E)	1.39
P(002)-C(00U)	1.790(10)	C(01A)-C(00W)	1.45(4)	C(1)-H(1)	0.93	C(01E)-H(01H)	0.93
P(008)-C(00Q)	1.705(18)	C(00P)-H(00P)	0.93	C(2)-H(2)	0.93	C(0)-H(0)	0.93
P(008)-C(01H)	1.81(2)	C(00P)-C(010)	1.343(14)	C(2)-C(3)	1.39	C(0)-C(17)	1.44(3)
2(008)-C(00V)	1.768(13)	C(00Q)-C(01M)	1.39	C(2)-C(00V)	1.39	C(11)-H(11)	0.93
P(008)-C(16)	1.813(14)	C(00Q)-C(018)	1.39	С(3)-Н(3)	0.93	C(11)-C(18)	1.33(3)
C(009)-C(00F)	1.405(14)	C(01M)-H(01M)	0.93	C(3)-C(01N)	1.39	C(12)-H(12)	0.93
C(009)-C(1)	1.409(14)	C(01M)-C(013)	1.39	C(01N)-H(01N)	0.93	C(12)-C(19)	1.39
C(00A)-C(00B)	1.441(14)	C(013)-H(013)	0.93	C(01N)-C(4)	1.39	C(12)-C(1A)	1.39
C(00A)-C(00I)	1.405(16)	C(013)-C(00S)	1.39	C(4)-H(4)	0.93	C(19)-H(19)	0.93
C(00A)-C(00Y)	1.385(15)	C(00S)-H(00S)	0.93	C(4)-C(5)	1.39	C(19)-C(01G)	1.39
C(00B)-C(00E)	1.428(14)	C(00S)-C(019)	1.39	C(5)-H(5)	0.93	C(01G)-H(01G)	0.93
C(00B)-C(00K)	1.407(14)	C(019)-H(019)	0.93	C(5)-C(00V)	1.39	C(01G)-C(1D)	1.39
C(00D)-H(00D)	0.93	C(019)-C(018)	1.39	C(16)-C(15)	1.39	C(1D)-H(1D)	0.93
C(00D)-C(00E)	1.366(14)	C(018)-H(018)	0.93	C(16)-C(01D)	1.39	C(1D)-C(01J)	1.39
C(00D)-C(00M)	1.415(16)	C(00R)-H(00R)	0.93	C(15)-H(15)	0.93	C(01J)-C(1A)	1.39
C(00E)-C(00J)	1.462(12)	C(00R)-C(00X)	1.341(16)	C(15)-C(14)	1.39	C(1A)-C(1B)	1.35(3)
C(00F)-H(00F)	0.93	C(00T)-H(00T)	0.93	C(14)-H(14)	0.93	C(2A)-H(2A)	0.93
C(00F)-C(010)	1.387(14)	C(00T)-C(016)	1.380(16)	C(14)-C(13)	1.39	C(2A)-C(3A)	1.39
C(00G)-H(00G)	0.93	C(00U)-C(00Z)	1.365(16)	С(13)-Н(13)	0.93	C(2A)-C(9)	1.39
C(00G)-C(00P)	1.381(15)	C(00U)-C(017)	1.387(15)	C(13)-C(10)	1.39	C(3A)-H(3A)	0.93
C(00G)-C(1)	1.403(14)	C(00W)-H(00W)	0.93	C(10)-H(10)	0.93	C(3A)-C(01O)	1.39
C(00H)-C(00N)	1.408(14)	C(00W)-C(39)	1.54(5)	C(10)-C(01D)	1.39	С(01О)-Н(01О)	0.93
C(00H)-C(012)	1.378(14)	C(00X)-H(00X)	0.93	C(01D)-H(01D)	0.93	C(01O)-C(4A)	1.39
C(00I)-H(00I)	0.93	C(00X)-C(012)	1.397(16)	C(39)-H(39)	0.93	C(4A)-H(4A)	0.93
C(00I)-C(00M)	1.360(17)	C(00Y)-H(00Y)	0.93	C(6)-H(6)	0.93	C(4A)-C(5A)	1.39
C(00J)-H(00A)	0.97	C(00Y)-C(016)	1.340(16)	C(6)-C(01J)	1.38(3)	C(5A)-H(5A)	0.93
C(00J)-H(00B)	0.97	C(00Z)-H(00Z)	0.93	C(6)-C(01S)	1.35(4)	C(5A)-C(9)	1.39
C(00K)-H(00K)	0.93	C(00Z)-C(011)	1.418(15)	P(0)-C(7)	1.80(3)	С(17)-Н(17)	0.93
C(00K)-C(00T)	1.360(14)	С(010)-Н(010)	0.93	P(0)-C(8)	1.81(2)	C(17)-C(1C)	1.32(3)
C(00L)-H(00L)	0.93	С(011)-Н(011)	0.93	P(0)-C(16A)	1.761(14)	C(18)-H(18)	0.93
C(00L)-C(00N)	1.365(15)	C(011)-C(014)	1.33(2)	P(0)-C(9)	1.771(13)	C(18)-C(1C)	1.36(4)
C(00L)-C(00R)	1.371(16)	С(012)-Н(012)	0.93	C(7)-C(0)	1.43(3)	C(1B)-C(39A)	1.48(5)
C(00M)-H(00M)	0.93	C(014)-H(014)	0.93	C(7)-C(11)	1.36(3)	C(1C)-H(1C)	0.93

Table S2. Bond Lengths for (NYP)2SbCl5.

C(00N)-H(00N)	0.93	C(014)-C(01B)	1.38(2)	C(8)-H(8A)	0.97	C(39A)-H(39A)	0.93
C(00O)-C(015)	1.39	С(016)-Н(016)	0.93	C(8)-H(8B)	0.97	C(39A)-C(01S)	1.29(4)
C(00O)-C(01A)	1.39	С(017)-Н(017)	0.93	C(16A)-C(15A)	1.39	C(01S)-H(01S)	0.93
C(00O)-C(8)	1.46(2)	C(017)-C(01B)	1.412(19)	C(16A)-C(01E)	1.39		

Table S3. Crystal data and structure refinement for $(NYP)_2Sb_2Cl_8$.

Empirical formula	C29 H24 Cl4 P Sb		
Formula weight	667.00		
Temperature	300.00 K		
Crystal system	triclinic		
Space group	P.1		
	$a = 10.843(4) \text{ Å}$ $a = 63.782(10) \circ$.		
Unit cell dimensions	$b = 12.238(5) \text{ Å}$ $b = 67.746(11) \circ.$		
	$c = 13.423(5) \text{ Å}$ $g = 67.259(13) ^{\circ}.$		
Volume	1426.5(10) Å ³		
Ζ	2		
Density (calculated)	1.553 g/cm ³		
Absorption coefficient	7.970 mm ⁻¹		
F(000)	664.0		
Theta range for data collection	7.946 to 120.47°.		
Index ranges	-13<=h<=13, -14<=k<=15,		
	17<=1<=16		
Reflections collected	16695		
Independent reflections	6044 [R(int) = 0.0356, R(sigma) =		
	0.0368]		
Completeness to theta = 25.115°	99.4 %		
Data / restraints / parameters	6044 / 0 / 317		
Goodness-of-fit on F ²	1.135		
Final R indices [I>2sigma(I)]	$R_1 = 0.0373, wR_2 = 0.0936$		
R indices (all data)	$R_1 = 0.0463, wR_2 = 0.1053$		
Largest diff. peak and hole	0.80 and -1.28 e.Å ⁻³		

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Sb1	Cl2	2.3804(15)	C7	C12	1.400(6)
Sb1	C13	2.4806(15)	C7	C8	1.384(6)
Sb1	Cl1	2.4471(15)	C14	C15	1.394(6)
P1	C1	1.805(4)	C12	C11	1.392(6)
P1	C13	1.801(4)	C4	C3	1.382(7)
P1	C19	1.825(4)	C4	C5	1.368(7)
P1	C7	1.792(4)	C28	C27	1.371(6)
C1	C2	1.395(6)	C6	C5	1.392(6)
C1	C6	1.391(5)	С9	C8	1.390(6)
C13	C18	1.402(6)	C9	C10	1.363(7)
C13	C14	1.385(6)	C24	C23	1.423(8)
C20	C29	1.421(5)	C24	C25	1.408(7)
C20	C19	1.516(5)	C10	C11	1.380(7)
C20	C21	1.375(6)	C27	C26	1.398(8)
C29	C28	1.430(6)	C22	C23	1.354(8)
C29	C24	1.427(6)	C17	C16	1.384(8)
C18	C17	1.385(6)	C15	C16	1.365(8)
C21	C22	1.412(7)	C26	C25	1.365(9)
C2	C3	1.390(6)			

Table S4. Bond Lengths for (NYP)2Sb2Cl8.

Compound	Emission (nm)	Decay time (μs)	PLQY (%)	Sb-Sb distance (Å)	Ref
(PPN) ₂ SbCl ₅	635	4.1	98.1	12.19	1
(Bmim) ₂ SbCl ₅	583	4.26	86.3	9.02	2
(TMA)₂SbCl₅·DMF	630	6.62	67.2	8.61	3
$(C_6N_2H_{16})_2SbCl_5$	613	1.06	25.3	3.99	4
$(C_6N_2H_{16})_2SbCl_5\cdot H_2O$	620	1.22	39.6	4.34	4
(NYP) ₂ SbCl ₅	620	0.33	75.07	10.09	This work

Table S5. Summary of the PL properties of hybrid antimony chlorides with

SbCl₅ cluster.

Table S6 The parameter of ISO 19232 duplex-wire image qualityindicator. DD: duplex wire numbers; UT: corresponding unsharpness;SRb: corresponding basic spatial resolution; d: wire diameter and spacing;LP: corresponding line pair value.

UT (mm)	SRb (mm)	d (mm)	ID (lm/marce)
		u (11111)	LP (Ip/IIIM)
800	400	400	1.250
640	320	320	1.560
500	250	250	2.000
400	200	200	2.500
320	160	160	3.130
260	130	130	3.850
200	100	100	5.000
160	80	80	6.250
130	63	63	7.690
100	50	50	10.000
80	40	40	12.50
63	32	32	15.90
50	25	25	20.00
20	20	20	25.00
	800 640 500 400 320 260 200 160 130 100 80 63 50 20	800 400 640 320 500 250 400 200 320 160 260 130 200 100 160 80 130 63 100 50 80 40 63 32 50 25 200 20	800 400 400 640 320 320 500 250 250 400 200 200 320 160 160 260 130 130 200 100 100 160 80 80 130 63 63 100 50 50 80 40 40 63 32 32 50 25 25 20 20 20

- Q. He, C. Zhou, L. Xu, S. Lee, X. Lin, J. Neu, M. Worku, M. Chaaban and B. Ma, Highly Stable Organic Antimony Halide Crystals for X-ray Scintillation, *ACS Mater. Lett.*, 2020, 2, 633-638.
- Z.-P. Wang, J.-Y. Wang, J.-R. Li, M.-L. Feng, G.-D. Zou and X.-Y. Huang, [Bmim]2SbCl5: a main group metal-containing ionic liquid exhibiting tunable photoluminescence and white-light emission, *Chem. Commun.*, 2015, **51**, 3094-3097.
- Q. Wei, T. Chang, R. Zeng, S. Cao, J. Zhao, X. Han, L. Wang and B. Zou, Self-Trapped Exciton Emission in a Zero-Dimensional (TMA)2SbCl5·DMF Single Crystal and Molecular Dynamics Simulation of Structural Stability, *The Journal of Physical Chemistry Letters*, 2021, **12**, 7091-7099.
- G. Song, M. Li, S. Zhang, N. Wang, P. Gong, Z. Xia and Z. Lin, Enhancing Photoluminescence Quantum Yield in 0D Metal Halides by Introducing Water Molecules, *Adv. Funct. Mater.*, 2020, 30, 2002468.