Electronic Supplementary Information

[Sn₃OF]PO₄ vs [Sn₃F₃]PO₄: Enhancing Birefringence through Breaking *R*3 Symmetry and Realigning Lone Pairs

Yuhan Hu^{a,b}, Xi Xu^a, Ruixi Wang^a, Shunsong Zhang^a, Jingyun Han^a, Shuhui Zhan^a, Jingyu Guo^{a,b*}, Li-ming Wu^{a,b*} and Ling Chen^{a,b*}

^aCenter for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, People's Republic of China

^bBeijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875,People's Republic of China

* Corresponding author: jyguo@bnu.edu.cn; wlm@bnu.edu.cn; chenl@bnu.edu.cn

Table of Contents

	Page
Supplementary Experimental Section	S3
Table S1. Crystal data and structure refinement for $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.	S4
Table S2. Selected bond lengths [Å] and angles [deg] for [Sn ₃ OF]PO ₄ and [Sn ₃ F ₃]PO ₄ .	S5
Table S3. Atomic coordinates, equivalent isotropic displacement parameter and bond valence sum (BVS)	\$6
for [Sn ₃ OF]PO ₄ and [Sn ₃ F ₃]PO ₄ .	30
Table S4. Calculation detail of the contribution for [Sn ₃ OF]PO ₄ and [Sn ₃ F ₃]PO ₄ .	S 7
Table.S5. Calculation detail of the assessment of consistency arrangement for [Sn ₃ OF]PO ₄ and	58
[Sn ₃ F ₃]PO ₄ .	50
Figure S1. The XRD powder refined pattern of [Sn ₃ OF]PO ₄ and [Sn ₃ F ₃]PO ₄ .	S9
Figure S2. P-O band length in [PO ₄] ³⁻ .	S10
Figure S3. Experimental band gap and UV-VIS diffuse reflection spectrum [Sn ₃ OF]PO ₄ and [Sn ₃ F ₃]PO ₄ .	S11
Figure S4. The IR spectrum $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.	S12
Figure S5. Powder SHG response of [Sn ₃ F ₃]PO ₄ .	S13
Figure S6. The EDS patterns of $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.	S14
Figure S7. The TG-DSC of $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.	S15
Figure S8. The crystals of $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.	S16
Figure S9. NaSn ₄ (PO ₄) ₃ viewed in the <i>ab</i> plane and the [001] projection of the symmetry elements of	S17
space group R3c.	517
Figure S10. Calculated band gap of $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.	S18
Reference	S19

Supplementary Experimental Section Synthesis of [Sn₃F₃]PO₄

The reagents including SnF_2 (Bldepham, 99 %) and H_3PO_4 (Aladdin, 99 %) were used as purchased. The crystal and polycrystalline powders of $[Sn_3F_3]PO_4$ was obtained in an aqueous solution¹: 7.05g SnF_2 are dissolved in 40 ml deionized water at 40 °C. The clear solution (previously filtered if some turbidity is present) is heated up to 50 °C and 15 ml H_3PO_4 (1mol/L) is added dropwise under continuous stirring. The colourless block-like $[Sn_3F_3]PO_4$ microcrystalline is filtered from the yet warm solution, washed with a small amount of deionized water and ethanol, finally dried at 70 °C during 12 h, and the yield of $[Sn_3F_3]PO_4$ product is 100% without impurity.

Electron Dispersive Spectroscopy

 $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$ crystals surfaces were characterized by electron dispersive spectroscopy (EDS) using a JMS-7610FPlus scanning electron microscope (SEM), equipped with an Oxford X-MasN EDS detector with a 20 mm² window, operated with an accelerating voltage of 20 kV and a working distance of 10 mm.

Second Harmonic Generation Response

Powder SHG was measured using the Kurtz and Perry method² with Q-switched Nd: YAG lasers at wavelengths of 1064 nm. Polycrystalline [Sn_3F_3]PO₄ samples were ground and sieved into a series of distinct size ranges, namely, 30–45, 45–75, 75–109, 109–150, and 150–212 µm, and KDP sieved into the same size ranges were used as references.

Empirical formula	[Sn ₂ OF]PO ₄	[Sn ₂ F ₂]PO ₄	[Sn ₂ F ₂]PO ₄ ^{#1}
Formula weight	486.04	508.04	508.04
Temperature	300.0 K	302.0 K	100 K
Wavelength	0.71073 Å 0.71073 Å		0.71073 Å
Crystal system	Monoclinic	Trigonal	Trigonal
Space group	P_{2}/c	R3	R3
Unit cell dimensions	a = 4.8865(2) Å	a = 11.8537(3) Å	$a = 11\ 8096(4)\ \text{\AA}$
	h = 114484(5) Å	h = 11.8537(3) Å	b = 11.8096(4) Å
	c = 11.9947(5) Å	c = 4.6271(2) Å	c = 4.65010(10)
	$a = 90^{\circ}$	$\alpha = 90^{\circ}$	$a = 90^{\circ}$
	$\beta = 97.286(1)^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 120^{\circ}$	$v = 120^{\circ}$
Volume	665.60(5) Å ³	563.05(4) Å ³	561.65(3) Å
Ζ	4	3	3
Density (calculated)	4.850 g/cm ³	4.495 g/cm ³	4.506 g/cm^3
Absorption coefficient	11.391	10.136 mm ⁻¹	10.162 mm ⁻¹
F(000)	856.0	672.0	
Radiation	Mo Kα ($\lambda = 0.71073$ Å)	Mo Kα ($\lambda = 0.71073$ Å)	Mo K α ($\lambda = 0.71073$ Å)
Theta range for data collection	4.938 to 55.08 °	6.874 to 54.832 °	× ,
Index ranges	$-6 \le h \le 6, -14 \le k \le 14, -15 \le l \le 15$	$-15 \le h \le 15, -15 \le k \le 15, -5 \le l \le 5$	
Reflections collected	12626	3648	13174
Independent reflections	1480 [R(int) = 0.0298, R(sigma) = 0.0155]	575 [R(int) = 0.0613, R(sigma) = 0.0321]	739 [$R(int) = 0.0283, R(sigma) = 0.0106$]
Completeness to theta	96.2 % (27.54 °)	100.00 % (27.416 °)	
Refinement method	Full-matrix least-squares on F_o^2	Full-matrix least-squares on F_o^2	
Goodness-of-fit on F_o^2	1.184	1.076	1.225
Final <i>R</i> indices [I>2sigma(I)] ^{#2}	$R_1 = 0.0177, wR_2 = 0.0366$	$R_1 = 0.0178, wR_2 = 0.0398$	$R_1 = 0.0095, wR_2 = 0.0235$
R indices (all data)	$R_1 = 0.0184, wR_2 = 0.0369$	$R_1 = 0.0186, wR_2 = 0.0405$	$R_1 = 0.0095, wR_2 = 0.025$
Largest diff. peak and hole	0.59 and -0.54 e/Å ³	0.52 and -0.55 e/Å ³	0.514 and -0.464 $e/Å^3$

Table S1. Crystal data and structure refinement for [Sn₃OF]PO₄ and [Sn₃F₃]PO₄.

^{#1} This crystal data was reported by E. Uglova. (E. Uglova, M. Reichelt, H. Reuter, Formation and structural characterization of the basic tin(II) fluoride, Sn₉F₁₃O(OH)₃·2H₂O, containing the unprecedented [Sn₄O(OH)₃]³⁺ cage-ion, *Z. Anorg. Allg. Chem.* 2022, 648, e202200302.) ^{#2} $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$ and $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w F_0^4]^{1/2}$ for $F_0^2 > 2\sigma (F_0^2)$

	[Sn ₃ OF]PO ₄						
Sn(1)-O(2)#1	2.156(3) Å	Sn(3)-F(1)	2.260(2) Å				
Sn(1)-O(4)	2.141(3) Å	P(1)-O(1)	1.559(3) Å				
Sn(1)-O(5)	2.115(2) Å	P(1)-O(2)	1.541(3) Å				
Sn(1)-F(1)#2	2.678(2) Å	P(1)-O(3)	1.532(3) Å				
Sn(2)-O(1)#3	2.461(3) Å	P(1)-O(4)	1.534(3) Å				
Sn(2)-O(1)#4	2.168(2) Å	O(2)-P(1)-O(1)	109.35(15) °				
Sn(2)-O(5)	2.066(2) Å	O(3)-P(1)-O(1)	106.52(14) °				
Sn(2)-F(1)	2.283(2) Å	O(3)-P(1)-O(2)	109.66(15) °				
Sn(3)-O(3)	2.173(2) Å	O(3)-P(1)-O(4)	112.71(15) °				
Sn(3)-O(5)	2.075(3) Å	O(4)-P(1)-O(1)	108.02(15) °				
Sn(3)-O(2) ^{#1}	2.740(3) Å	O(4)-P(1)-O(2)	110.45(16) °				
	[Sn ₃ F	3]PO ₄					
Sn(1)-O(1)	2.098(6) Å	P(1)-O(2)	1.556(10) Å				
Sn(1)-O(2)#5	2.567(6) Å	O(1) ^{#7} -P(1)-O(1) ^{#8}	111.5(2) °				
Sn(1)-F(1)	2.058(5) Å	O(1)-P(1)-O(1) ^{#8}	111.5(2) °				
Sn(1)-F(1)#6	2.264(5) Å	O(1) ^{#7} -P(1)-O(2)	107.4(2) °				
P(1)-O(1)	1.523(6) Å	O(1)-P(1)-O(2)	107.4(2) °				
P(1)-O(1)#7	1.523(6) Å	O(1) ^{#8} -P(1)-O(2)	107.4(2) °				
P(1)-O(1)#8	1.523(6) Å						

Symmetry transformations used to generate equivalent atoms: #1 1+x, y, z; #2 1/2+x, 3/2-y, -1/2+z; #3 3/2-x, 1/2+y, 1/2-z; #4 1/2+x, 3/2-y, 1/2+z; #5 x, y, -1+z; #6 5/3-y, 1/3+x-y, 1/3+z; #7 1+y-x, 1-x, +z; #8 1-y, +x-y, +z

	Ato m	Wycoff	х	У	Z	$U_{eq}^{\#1}$	BVS#2
	Sn(1)	4 <i>e</i>	11223.1(5)	8608.1(2)	2015.0(2)	15.65(8)	2.118
	Sn(2)	4 <i>e</i>	7189.7(5)	8965.3(2)	4388.9(2)	16.24(8)	2.063
	Sn(3)	4 <i>e</i>	10904.9(5)	6423.0(2)	4136.3(2)	18.64(8)	1.993
	P(1)	4 <i>e</i>	6165.6(17)	6568.4(8)	1861.4(7)	12.17(17)	4.918
[Sn ₃ OF]PO	O(1)	4 <i>e</i>	5074(5)	5723(2)	887(2)	17.9(5)	2.053
4	O(2)	4 <i>e</i>	3707(5)	7069(2)	2395(2)	20.4(5)	1.984
	O(3)	4 <i>e</i>	7985(5)	5836(2)	2731(2)	17.7(5)	1.867
	O(4)	4e	7765(5)	7554(2)	1366(2)	21.1(5)	1.985
	O(5)	4 <i>e</i>	10202(5)	8137(2)	3616(2)	17.2(5)	2.287
	F(1)	4 <i>e</i>	7309(5)	7068(2)	4979.1(19)	22.9(5)	0.915
	Sn(1)	9 <i>b</i>	9052.0(5)	4506.6(6)	1048(3)	20.65(17)	2.114
	P(1)	3 <i>a</i>	6666.67	3333.33	6015(7)	15.0(7)	5.042
[Sn ₃ F ₃]PO ₄	O(1)	9 <i>b</i>	8081(6)	4103(8)	5033(12)	28.2(15)	2.096
	O(2)	3 <i>a</i>	6666.67	3333.33	9380(20)	21(2)	1.796
	F(1)	9 <i>b</i>	8669(6)	6010(5)	578(13)	39.2(15)	1.102

Table S3. Atomic coordinates, Wycoff positions, equivalent isotropic displacement parameter and bond valence sum (BVS) for [Sn₃OF]PO₄ and [Sn₃F₃]PO₄.

^{#1} U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor. ^{#2} Bond valence sums are calculated by using bond-valence theory ($S_i = \exp[(R_o - R_i)/B]$, where R_o is an empirical constant, R_i is the length of bond I (in angstroms), and B = 0.37).

	Sn-centered Polyhedron in unit cell		Coordinate		Projected value (n_x)	Projected value (n_y)	Projected value (n_z)	Contribution of n_x	Contribution of n_y	Contribution of n_z
	$1^{1\#}[Sn(1)O_{2}F]^{5-}$	-0.14	0.12	-0.86	0.14	0.12	0.86			
	$^{2\#}[Sn(1)O_3F]^{5-}$	-0.14	0.12	0.86	0.14	0.12	0.86			
	$^{3\#}[Sn(1)O_3F]^{5-}$	0.14	-0.12	-0.86	0.14	0.12	0.86			
	$4^{\#}[Sn(1)O_3F]^{5-}$	0.14	-0.12	0.86	0.14	0.12	0.86			
	ΣProjected value(Sr	n(1))			0.56	0.48	3.44			
	$5^{5\#}[Sn(2)O_3F]^{5-}$	-0.04	-0.86	-0.15	0.04	0.86	0.15			
	${}^{6\#}[Sn(2)O_3F]^{5-}$	-0.04	-0.86	0.15	0.04	0.86	0.15	2 00	(1)	() (
[Sn ₃ OF]PO ₄	^{7#} [Sn(2)O ₃ F] ⁵⁻	0.04	0.86	-0.15	0.04	0.86	0.15	2.80	0.10	6.24
	${}^{8\#}[Sn(2)O_{3}F]^{5}$	0.04	0.86	0.15	0.04	0.86	0.15			
	∑Projected value(Sr	n(2))			0.16	3.44	0.60			
	^{9#} [Sn(3)O ₃ F] ⁵⁻	-0.52	0.56	-0.55	0.52	0.56	0.55			
	^{10#} [Sn(3)O ₃ F] ⁵⁻	-0.52	0.56	0.55	0.52	0.56	0.55			
	^{11#} [Sn(3)O ₃ F] ⁵⁻	0.52	-0.56	-0.55	0.52	0.56	0.55			
	^{12#} [Sn(3)O ₃ F] ⁵⁻	0.52	-0.56	0.55	0.52	0.56	0.55	_		
	∑Projected value(Sr	n(3))			2.08	2.24	2.20			
	$\overline{\Sigma}$ Projected value(Sr	1)			2.80	6.16	6.24			
	Sn-centered				Duciented	Duciented	Duciented	Contribution of	Contribution of	
	Polyhedron in		Coordinate		Projected	Projected	Projected	Contribution of	$n_{\rm perpendicular to the}$	
	unit cell				$value(n_a)$	$value(n_b)$	$value(n_c)$	<i>n_{ac-plane}</i>	ac-plane	
	^{1#} [SnO ₂ F ₂] ⁴⁻	0.51	-0.33	-0.44	0.51	0.33	0.44			
	^{2#} [SnO ₂ F ₂] ⁴⁻	-0.84	-0.51	-0.44	0.84	0.51	0.44			
	$3^{3\#}[SnO_2F_2]^{4-}$	0.33	0.84	-0.44	0.33	0.84	0.44			
	$4^{4^{+}}[SnO_{2}F_{2}]^{4^{-}}$	-0.84	-0.51	-0.44	0.84	0.51	0.44			
	$5^{5^{\#}}[SnO_{2}F_{2}]^{4^{-}}$	0.33	0.84	-0.44	0.33	0.84	0.44	5.46	4.29	
[Sn ₃ F ₃]PO ₄	${}^{6\#}[SnO_{2}F_{2}]^{4-}$	0.51	-0.33	0.44	0.51	0.33	0.44			
	$7^{\#}[SnO_{2}F_{2}]^{4-}$	0.42	1.05	-0.55	0.42	1.05	0.55			
	^{8#} [SnO ₂ F ₂] ⁴⁻	0.63	-0.42	-0.55	0.63	0.42	0.55			
	^{9#} [SnO ₂ F ₂] ⁴⁻	-1.05	-0.63	-0.55	1.05	0.63	0.55			
	\sum Projected value	100			5.46	5.46	4.29			

Table S4. Calculation detail of the contribution for $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.

	$ heta_i$	п	$\sum_{i}^{n} cos \theta_{i}$
			<u> </u>
[Sn ₃ OF]PO ₄	$\begin{array}{c} 87.6 \circ \times 8 \\ 72.8 \circ \times 8 \\ 72.5 \circ \times 4 \\ 65.6 \circ \times 8 \\ 63.3 \circ \times 8 \\ 49.2 \circ \times 8 \\ 41.9 \circ \times 8 \\ 23.8 \circ \times 4 \\ 19.8 \circ \times 3 \\ 0 \circ \times 7 \end{array}$	66	0.54
	$ heta_i$	п	$\frac{\sum_{i}^{n} \cos\theta_{i}}{n}$
[Sn ₃ F ₃]PO ₄	61.8 ° ×27 0 ° ×9	36	0.47

 $\label{eq:stables} \textbf{Table S5.} Calculation detail of the assessment of consistency arrangement for [Sn_3OF]PO_4 and [Sn_3F_3]PO_4.$

Figure S2. P-O bond length in $[PO_4]^{3-}$.

Figure S3. Experimental band gaps and UV-Vis diffuse reflection spectra of [Sn₃OF]PO₄ and [Sn₃F₃]PO₄.

555

Figure S4. The IR spectra of $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.

Figure S5. Powder SHG response of [Sn₃F₃]PO₄.

Figure S6. The EDS patterns of [Sn₃OF]PO₄ and [Sn₃F₃]PO₄.

[Sn₃OF]PO₄

Before extinction

 $\label{eq:After extinction} {\bf Figure 8. The crystals of $[Sn_3OF]PO_4$ and $[Sn_3F_3]PO_4$.}$

[Sn₃F₃]PO₄

Before extinction

After extinction

Figure S9. NaSn₄(PO₄)₃ viewed in the *ab* plane and the [001] projection of the symmetry elements of space group R3c.

- **Reference** 1 S.B. Etcheverry, G.E. Narda, M.C. Apella, E.J. Baran, Hydrolytic Properties of Sn₃PO₄F₃ (Short Communication), *Caries Res.*, 1986, **20**, 120–122. S. K. Kurtz, T. T. Perry, A powder technique for the evaluation of nonlinear optical materials, *J. Appl. Phys.*, 1968, **39**,
- 2 3798-3813.