Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2024

m Ω **um** Wîî (d) 3 um **um** 00 nm m

Supporting Information

Fig. S1. FESEM images of (a, b) NPG and NPG@WS₂ prepared at (c, d) high and (e, f) low concentrations.

Fig. S2. (a) XRD patterns and (b) Raman spectra of NPG.

Fig. S3. TG analysis of NPG@WS₂/Co₉S₈@NC.

Fig. S4. XPS analysis of (a) NPG@WS₂/Co₉S₈@NC and (b) high-resolution N 1s.

Fig. S5. (a) The initial three CV curves at a scan rate of 0.1 mV s⁻¹ and (b) the 1st, 2nd, 10th, 50th and 100th galvanostatic discharge/charge curves of NPG@WS₂ as anode for LIB within a voltage window of 0.01-3.0 V at a current density of 500 mA g^{-1} .

Fig. S6. Comparison of rate capability for LIBs between NPG@WS₂/Co₉S₈@NC and WS_2 -based (or Co_9S_8 -based) anodes reported in the recent literatures.

Fig. S7. SEM images of (a) NPG@WS₂/Co₉S₈@NC and (b) NPG@WS₂ materials after 200 cycles at 0.5 A g^{-1} .

Fig. S8. HRTEM image of NPG@WS2/Co9S8@NC materials after 200 cycles at 0.5 A

 g^{-1} .

Fig. S9. Cycling performance and Coulombic efficiency of NPG at (a) $0.5 A g^{-1}$ and (b)

 $1 A g^{-1}$

Fig. S10. (a) UV-vis DRS spectra and (b) Tauc plots of $NPG@WS_2$ and $NPG@WS_2/Co_9S_8@NC.$

Samples	$\text{Rs }(\Omega)$	$Rct(\Omega)$
$NPG@WS_2/Co_9S_8@NC$ after 10 cycles	1.59	162.5
Fresh NPG@WS ₂ /Co ₉ S ₈ @NC	2.91	489.8
$NPG@WS_2$	16.52	679.5

Table S2. EIS specific descriptions of NPG@WS₂ and NPG@WS₂/Co₉S₈@NC electrode at various states.

References

- 1. B. Mondal, A. Azam and S. Ahmad, PCBM Functionalized WS₂ Hybrid Nanostructures for High Performance Li-Ion Battery Anodes: Toward Binder-Free Electrodes, *Energy Fuels*, 2023, **37**, 16105-16118.
- 2. Z. W. Li, F. Yuan, M. S. Han and J. Yu, Atomic-Scale Laminated Structure of O-Doped WS₂ and Carbon Layers with Highly Enhanced Ion Transfer for Fast-Charging Lithium-Ion Batteries, *Small*, 2022, **18**, 2202495.
- 3. Y. C. Song, J. X. Liao, C. Chen, J. Yang, J. C. Chen, F. Gong, S. Z. Wang, Z. Q. Xu and M. Q. Wu, Controllable morphologies and electrochemical performances of self-assembled nano-honeycomb WS_2 anodes modified by graphene doping for lithium and sodium ion batteries, *Carbon*, 2019, **142**, 697- 706.
- 4. X. E. Zhang, R. F. Zhao, Q. H. Wu, W. L. Li, C. Shen, L. B. Ni, H. Yan, G. W. Diao and M. Chen, Ultrathin WS_2 nanosheets vertically embedded in a hollow mesoporous carbon framework - a triple-shell structure with enhanced lithium storage and electrocatalytic properties, *J. Mater. Chem. A*, 2018, **6**, 19004- 19012.
- 5. L. S. Zhang, W. Fan and T. X. Liu, Flexible hierarchical membranes of WS_2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage, *Nanoscale*, 2016, **8**, 16387-16394.
- 6. X. P. Du, Y. Huang, Z. H. Feng, X. P. Han, J. M. Wang and X. Sun, Encapsulating yolk-shelled $Si@Co₉S₈$ particles in carbon fibers to construct a free-standing anode for lithium-ion batteries, *Appl. Surf. Sci.*, 2023, **610**, 155491.
- 7. Y. Zheng, Y. Xu, J. P. Guo, J. D. Li, J. J. Shen, Y. Guo, X. Z. Bao, Y. K. Huang, Q. Zhang, J. C. Xu, J. Wu, H. Ian and H. Y. Shao, Cobalt sulfide nanoparticles restricted in 3D hollow cobalt tungstate nitrogen-doped carbon frameworks incubating stable interfaces for Li-ion storage, *Electrochim. Acta*, 2022, **431**, 141134.
- 8. S. Y. Xu, X. C. Cao, F. Li, H. Li, H. Y. Qi, J. Zhang, C. Y. Chen and D. C. Ju, Novel 3D $Co₉S₈(a)$ graphene nanocomposites prepared by deep eutectic solvents for lithium-ion storage, *J. Alloys Compd.*, 2023, **936**, 168080.
- 9. B. Wu, R. Ma, X. W. Liu, Y. Q. Zheng, S. S. Guo, Y. M. Yi, M. T. Sun, S. H. Wang and T. Wen, Self-assembly synthesis of petal-like $M_0S_2/C_0S_8/carbon$ nanohybrids for enhanced lithium storage performance, *Front. Energy Res.*, 2022, **10**, 918494.