Supplementary Material

Easy Recycling of Nanoscale Fe₂O₃-Based Catalysts for Nitroarene Reduction to Anilines by Pyrolysis of Metallogel

Wen-Ting Deng[‡], Xiang Zhong[‡], Yang Li, Xin-Jian Jia, Hai-Qing Luo, Xu-Zhong Luo^{*}

College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China

‡ Wen-Ting Deng and Xiang Zhong contributed equally to this work.

1. General

Materials and Instruments

All reagents were commercially available and used without further purification Except triethylamine and dichloromethane were removed water. ¹H spectra were collected on 400 MHz Bruker AVANCE 400 spectrometers. Chemical shifts were reported in ppm. Deuterium reagents was *d*⁶-DMSO. SEM images were collected on FEI quanta 450 instrument. GC-MS were obtained with Shimadzu GCMS-QP 2010SE.

2. Synthesis and characterization

2.1 The synthesis of gelator 2B-N3.

As shown in Scheme **S1**, 3-aminopyridine (1.88 g, 20 mmol) and triethylamine (3 mL, 21.55 mmol) were mixed in dichloromethane (50 mL), then slowly added 50 mL dichloromethane solution with (2, 2'-bipyridine)-4, 4'-dicarbonyl dichloride (2.80 g, 10 mmol) to it at 0 °C. After dropping, added triethylamine into it, and gradually stir to raise the temperature to room temperature. After reaction for 7 hours, filtered and washed with dichloromethane, crude product dissolved with hot DMSO, recrystallized with water obtained white solid powder (0.52 g, 14.0 %) - N, N '- di (3-pyridyl) - 2, 2-bipyridine-4, 4-diformamide (Abbreviated as **2B-N3**) ¹H-NMR (400 MHz, DMSO) 10.91 (d, J = 6.6 Hz, 2H), 8.98 (dd, J = 13.8, 2.7 Hz, 6H), 8.38 (dd, J = 4.7, 1.4 Hz, 2H), 8.29 - 8.20 (m, 2H), 8.05 - 7.96 (m, 2H), 7.46 (dd, J = 8.2, 4.7 Hz, 2H) (Figure **S1**). LC-MS [M+H]⁺ calculated for C₂₂H₁₆N₄O₂ : m/z 396.13; found: 397.14.

Scheme S1. Synthesis of 2B-N3

Figure S1. ¹H-NMR spectrum (400 MHz, DMSO) of compound 2B-N3

2.2 The synthesis of metallogel Fe-2B-N3.

Gelator	Metal Ion	State	Metal Ion	State
	AlCl ₃	S	Mg(NO ₃) ₂	I
	Al(NO ₃) ₃	S	MgSO ₄	Ι
	$Al_2(SO_4)_3$	S	$ZnCl_2$	Ι
	FeCl ₃	Р	$Zn(NO_3)_2$	Ι
	$Fe(NO_3)_3$	G	$ZnSO_4$	Ι
	$Fe_2(SO_4)_3$	Р	$CaCl_2$	Ι
	FeCl ₂	S	Ca(NO ₃) ₂	Ι
	FeSO ₄	Ι	$SnCl_2$	Р
	Fe(NO ₃) ₂	S	$SnCl_4$	Р
	CuCl ₂	Ι	Pb(NO ₃) ₂	Ι
	Cu(NO ₃) ₂	Ι	NiCl ₂	Ι
	$CuSO_4$	Ι	Ni(NO ₃) ₂	Ι
	Cu(CH ₃ COO) ₂	Ι	NiSO ₄	Ι
	CrCl ₃	S	La(NO ₃) ₃	Р
	Cr(NO ₃) ₃	Р	CeCl ₃	Р
	$Cr_2(SO_4)_3$	S	Ce(NO ₃) ₃	Р
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ 2B-N3 \end{array} $	CdCl ₂	Ι	SrCl ₂	Ι
	Cd(NO ₃) ₂	Ι	Sr(NO ₃) ₂	Ι
	CdSO ₄	Ι	LiCl	Ι
	CoCl ₂	Р	LiNO ₃	Ι
	Co(NO ₃) ₂	Р	NaCl	Ι
	$CoSO_4$	Р	NaNO ₃	Ι
	MnCl ₂	Ι	Na_2SO_4	Ι
	Mn(NO ₃) ₂	Ι	KCl	Ι
	MnSO ₄	Ι	KNO3	Ι
	MgCl ₂	Ι	K_2SO_4	Ι
	$BaCl_2$	Ι	RbCl	Ι
	Ba(NO ₃) ₂	Ι	AgNO ₃	Ι

 Table S1. Determination of gelling property of gelator in different metal ions.

G = gel; S = solution; P = precipitate; I = insoluble. 2B-N3: 0.1 mmol; metal ions: 0.1 mol/L

2.3 Determination of minimum gel concentration (MGCs) and microstructure.

Weigh amounts of gelator (**2B-N3**) into a small bottle, added 1.0 mL 0.1 mol/L Fe (NO₃)₃, heated and ultrasonic them to dissolved, cooled to room temperature. If stable supramolecular metallogel was formed, then added Fe (NO₃)₃ solution until the stable metallogel cannot be formed. Use the mass ratio of gelator to the volume of Fe³⁺ to obtain the minimum gelling concentration of metallogel. The minimum amounts of **2B-N3** dissolved in 1mL Fe (NO₃)₃ aqueous solution of different concentration necessary for gelatinizing aqueous solution efficiently was assigned to minimum gel concentration (MGCs) of **2B-N3**. As the concentration of Fe (NO₃)₃ solution increased, the minimum gelling concentration of metallogel also increased, and its microstructure will change due to different concentrations (**Table S2**).

Fe (NO ₃) ₃	MGCs
0.010 M	12.6 mg/mL
0.020 M	15.3 mg/mL
0.030 M	16.6 mg/mL
0.040 M	18.2 mg/mL
0.050 M	20.1 mg/mL
0.100 M	39.5 mg/mL
0.150 M	53.0 mg/mL
0.200 M	70.1 mg/mL

Table S2. MGCs at different Fe (NO₃)₃ concentrations

Figure S2. (a, b, c = 6000x, 3000x, 1500x) Microstructure of areogel of Fe (NO₃)₃ = 0.1 M

2.4 Characterization of catalyst.

Number	Catalyst	Temperature	Time (min)	Con. (%)	Sel. (%)
		(°C)			
1	600-2h-1	80	20	>99.9	>99.9
2	700-2h-1	80	13	>99.9	>99.9
3	800-1h-1	80	13	>99.9	>99.9
4	800-3h-1	80	14	>99.9	>99.9
5	900-2h-1	80	15	>99.9	>99.9

Table S3. Comparison of catalytic activity of different catalytic materials

 Table S4. Iron content in different catalytic materials

Catalytic material	Iron content (total Fe, wt %)
600-2h-1	18.31
700-2h-1	20.92
L (800-2h-1)	21.74
900-2h-1	21.89
800-1h-1	21.19
800-2h-0	23.37
800-2h-2	22.44
800-2h-3	22.50
800-3h-1	26.77

2.5 TOF calculation method ^[1].

 $\frac{moles \ of \ converted \ substrate}{\text{Turnover frequency (TOF)} = \frac{moles \ of \ converted \ substrate}{moles \ of \ Fe \ \times \ reaction \ time \ (h)}$

2.6 ¹H-NMR of the reduced product.

S10

Figure S3. ¹H-NMR (400 MHz, d⁶-DMSO) reaction products.

2.7 Possible reaction mechanisms.

Figure S4. Possible mechanism of catalyst L for reducing nitrobenzene to aniline.

2.8 Reference

[1] X. -L. Cui, Q. -L. Zhang, M. Tian, Z. -P. Dong. Facile fabrication of γ -Fe₂O₃-nanoparticle modified N-doped porous carbon materials for the efficient hydrogenation of nitroaromatic compounds. *N. J. Chem*, 2017, **41** (18), 10165-10173.