Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Size Matters: Altering the Metal-Surface Coordination in Micropores via Structural Confinement Effects

Scott A. Southern^a, Austin Thompson^b, Aaron D. Sadow^{a,b}, and Frédéric A. Perras^{*a,b}

a. Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011

(USA)

b. Department of Chemistry, Iowa State University, Ames, IA 50011 (USA)

Correspondence: fperras@ameslab.gov

Table of Contents

. Simulation of PARS Spectra with Intermediate Dynamics	3
1.1. Typical Input Parameters	3
1.2. Simulation of PARS Spectra with Intermediate Dynamics	3
. Supplementary Synthetic Methods	4
. Supplementary Tables and Figures	6
. DFT Calculations	17
3.1. Example ADF input file	17
3.2. Geometry optimized coordinates of Sc{κ²-(NPh) ₂ CH} ₂ /SiO ₂	.18
. Supplementary References	19

1. Simulation of PARS Spectra with Intermediate Dynamics

1.1. Typical Input Parameters

We employed a fitting procedure using a homebuilt C/C++ program we developed to simulate dipolar coupling doublets pairs of nuclei experiencing dynamic jump motions. Powder averaging was accomplished using 2000 orientations generated using the REPULSION scheme.¹ Each experimental doublet, representing C_2 jump dynamics, was simulated using a ¹³C-¹H dipolar coupling constant of 23.2 kHz, and an exchange constant, *k*, calculated using the Eyring equation for the specific sample temperature and activation energy, E_A . The modeling approach is described in greater detail in section 1.2.

1.2. Simulation of PARS Spectra with Intermediate Dynamics

PARS spectra containing dynamics of intermediate timescale were simulated assuming a 2-site exchange model that can be treated analytically.² We assume a static orientation of the 2-site system where the dipolar coupling constant is scaled by the recoupling sequence's (wR18₂⁵) scaling factor (κ =0.223) and the exchange occurs at a rate of *k*. The exchange matrix is given by.

$$L = \begin{bmatrix} i\kappa\omega_{D,A} - k & k \\ k & i\kappa\omega_{D,B} - k \end{bmatrix}$$

where $\omega_{D,A}$ and $\omega_{D,B}$ are the dipolar frequencies associated with both orientations.

$$\omega_{D,A} = 2\pi D (3\cos^2\beta - 1)$$

The NMR signals evolves as exp(L) which produces two Lorentzians:

$$l_{1} = e^{-kt} e^{i\bar{\omega}t} e^{-\frac{t}{2}\sqrt{4k^{2} - \omega_{\Delta}^{2}}}$$
$$l_{2} = e^{-kt} e^{i\bar{\omega}t} e^{\frac{t}{2}\sqrt{4k^{2} - \omega_{\Delta}^{2}}}$$

where,

$$\bar{\omega} = (\kappa \omega_{D,A} + \kappa \omega_{D,B})/2$$
$$\omega_{\Delta} = \kappa \omega_{D,A} - \kappa \omega_{D,B}$$

These Lorentzians have linewidths characterized by R_2 values of:

$$R_2 = \begin{cases} k & \omega_{\Delta}^2 \ge 4k^2 \\ k - \frac{1}{2}\sqrt{4k^2 - \omega_{\Delta}^2} & \omega_{\Delta}^2 < 4k^2 \end{cases}$$

To simulate *R*-symmetry lineshapes, we then adopt the appropriate orientational dependence for the recoupled lineshape

 $f \propto \kappa D(3sin^2\beta + \eta cos2\alpha(1 + cos\beta)^2/2)$

and introduce two conditions, namely, whether the dynamics are faster or slower than the resonance frequency differed in that powder orientation.

$$e^{i\langle f_X\rangle t}e^{R_2t} = \begin{cases} e^{if_Xt}e^{kt} & \omega_{\Delta}^2 \ge 4k^2\\ e^{i\langle f\rangle t}e^{\left(k + \frac{1}{2}\sqrt{4k^2 - \omega_{\Delta}^2}\right)t} & \omega_{\Delta}^2 < 4k^2 \end{cases}$$

This is an approximation of the expected lineshape but enables for the accurate simulation of coalescence in Rsymmetry-based dipolar recoupling experiments. Powder averaging over Euler angles is then performed and a Fourier transform is applied to convert the time dependence described above into the recoupled lineshapes.

2. Supplementary Synthetic Methods

General. Dry solvents were obtained from an Innovative Technologies solvent purification system and stored over molecular sieves under inert gas. Benzene- d_6 was dried by stirring over NaK followed by vacuum transfer. Aniline was purchased from Sigma-Aldrich and was used as received. Potassium hydride (Sigma-Aldrich) suspended in mineral oil was washed with dry pentane, dried in vacuo, and stored in an N₂-filled glovebox. Anhydrous LaCl₃, ScCl₃, and YCl₃ were obtained from Strem Chemicals and used as received. Sc{(N/Pr)₂CH}₃ was obtained from Strem and sublimed before use. Triethyl orthoformate (formyl-¹³C, 99%) and aniline (¹³C₆, 99%) were obtained from Cambridge Isotope Laboratories and used as received. Solution-state NMR spectra were acquired on either a Bruker AVIII-600 or a Bruker NEO-400 spectrometer. Spectra were calibrated with reference to the residual ¹H signal in the deuterated solvent. Fourier transform infrared spectroscopy (FTIR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were acquired using a Bruker Vertex 80 spectrometer. Silica supports (Sigma-Aldrich) were calcined at 500 °C under air for 12 h (ramp rate 2 °C/min), partially dehydroxylated under dynamic vacuum at 550 °C for 12 h (ramp rate 2 °C/min) and stored in an N₂-filled glovebox. The silanol content in the silica materials was measured by NMR titration using the protonation of Bn₂Mg to form toluene in benzene- d_6 with tetrakis(trimethylsilyl)silane (TMSS) as an internal standard of known concentration.

Metal loadings were determined by solution-state NMR. Briefly, amidinate complexes were first dissolved in a Youngs tap fitted NMR tube using benzene- d_6 with TMSS as an internal standard. Using this standard, the millimoles (mmol) of the complex was determined by ¹H NMR integration. A known amount of silica (based on silanol concentration, 0.9 equiv.) was then added to the NMR tube and allowed to mix for 24 h. Following this reaction, the residual concentration of the free metal complex was again quantified to determine the mmol of the complex that was consumed.

Physisorption isotherms were measured in a Micromeritics Tristar surface area and porosity analyzer. The surface area was calculated by the Brunauer-Emmett-Teller (BET) method.

Yttrium tris[*N*,*N*'-bis(phenyl-¹³C₆)formamidate-¹³C₁₃] (Y{ κ^2 -(NPh)₂CH-¹³C₁₃}). YCl₃ (0.045 g, 0.230 mmol, 1 equiv.) was suspended in anhydrous THF (8 mL) and stirred vigorously. A THF solution of K[(NPh)₂CH-¹³C₁₃] (0.164 g, 0.690 mmol, 3 equiv.) was added in a dropwise fashion to the stirring suspension. The reaction mixture became increasingly turbid as it was stirred for 12 h. The solution was filtered through a 0.45 µm glass fiber filter, and the solvent removed *in vacuo*. The residue was lyophilized by dissolving in benzene (5 mL), freezing the solution, and subliming the benzene *in vacuo* to yield Y{ κ^2 -(NPh)₂CH-¹³C₁₃} (0.146 g, 92.5%) as a pale-yellow solid, which was used without further purification. ¹H NMR (400 MHz, benzene-*d*₆): δ 7.82 (d, ¹*J*_{CH} = 173.6 Hz, 3 H, formyl ¹³CH), 7.10 (vt, ¹*J*_{CH} = 155 Hz (satellite), ³*J*_{HH} = 8 Hz, 12 H, *meta*-C₆H₅), 6.9 (m, 18 H, *ortho/para*-C₆H₅). ¹³C{¹H}</sup> NMR (100.6 MHz, benzene-*d*₆): δ 149.5 (br s, formyl ¹³CH), 146.1 (t, ¹*J*_{CC} = 61.6 Hz, *ipso*-C₆H₅), 129.5 (td, ¹*J*_{CC} = 56.9, ³*J*_{CC} = 7.1 Hz, *meta*-C₆H₅), 123.3 (td, ¹*J*_{CC} = 56.1 Hz, ³*J*_{CC} = 9.5 Hz, *para*-C₆H₅), 119.6 (vt, ¹*J*_{CC} = 58.9 Hz, *ortho*-C₆H₅).

Lanthanum tris[*N*,*N*'-bis(phenyl-¹³C₆)formamidate-¹³C₁₃] (La{κ²-(NPh)₂CH-¹³C₁₃}). La{κ²-(NPh)₂CH-¹³C₁₃}, was prepared following the procedure described for Y{κ²-(NPh)₂CH-¹³C₁₃}. LaCl₃ (0.040 g, 0.163 mmol, 1 equiv.) and K[(NPh)₂CH-¹³C₁₃] (0.117 g, 0.492 mmol, 3 equiv.) were combined to afford La{(NPh)₂CH-¹³C₁₃} (0.107 g, 89.2%) as a pale-yellow solid. ¹H NMR (400 MHz, benzene-*d*₆): δ 8.378 (d, ¹*J*_{CH} = 162.4 Hz, 3 H, formyl ¹³CH), 7.21 (t, ¹*J*_{CH} = 154 Hz (satellite), ³*J*_{HH} = 8.0 Hz, 12 H, *meta*-C₆H₅), 6.92 (m, 18 H, *ortholpara*-C₆H₅).¹³C{¹H} NMR (100.6 MHz, benzene-*d*₆): δ 156.9 (s, formyl ¹³CH), 151.3 (t, ¹*J*_{CC} = 62.3 Hz, *ipso*-C₆H₅), 129.7 (td, ¹*J*_{CC} = 57.3 Hz, ³*J*_{CC} = 7.8 Hz, *meta*-C₆H₅), 121.5 (td, ¹*J*_{CC} = 55.8 Hz, ³*J*_{CC} = 8.9 Hz, *para*-C₆H₅), 120.0 (t, *J* = 59.9 Hz, *ortho*-C₆H₅).

Natural Abundance. $Y{\kappa^2-(NPh)_2CH}_{3}$, $La{\kappa^2-(NPh)_2CH}_{3}$, and $Sc{\kappa^2-(NPh)_2CH}_{3}$, at natural abundance, were synthesized in an analogous manner to that of the enriched species.

Yttrium tris[*N*,*N*'-bis(phenyl)formamidate] tetrahydrofuran (Y{κ²-(NPh)₂CH}₃)·THF. YCl₃ (0.198 g, 1.01 mmol, 1 equiv.) and K[(NPh)₂CH] (0.710 g, 3.03 mmol, 3 equiv.) afforded Y{κ²-(NPh)₂CH}₃·THF as yellow solid (0.468 g, 61.8%). ¹H NMR (600 MHz, benzene-*d*₆): δ 8.88 (s, 3 H, formyl), 7.08 (t, ³*J*_{HH} = 8.4 Hz, 12 H, *meta*-C₆H₅), 6.96 (d, ³*J*_{HH} = 7.8 Hz, 12 H, *ortho*-C₆H₅), 6.88 (t, ³*J*_{HH} = 7.2 Hz, 6 H, *para*-C₆H₅). ¹³C{¹H} NMR (151 MHz, benzene-*d*₆): δ 163.9 (formyl), 149.2 (*ipso*-C₆H₅), 129.0 (*meta*-C₆H₅), 122.2 (*para*-C₆H₅), 120.2 (*ortho*-C₆H₅), 69.9 (THF), 24.7 (THF). IR (KBr, cm⁻¹): 3053 w, 3031 w, 2910, w, 2890 w, 1649 m, 1587 m, 1527 s, 1485 s, 1385 m, 1288 s, 1218 m, 1172 w, 1152 w, 1076 w, 1027 w, 988 w, 944 w, 897 w, 868 w, 831 w, 810 w, 758 s, 692 s. Anal. Calcd for C₄₃H₄₁N₆OY: C, 69.16; H, 5.53; N, 11.25. Found: C, 68.98; H, 5.45; N, 11.09.

Lanthanum tris[*N*,*N*'-bis(phenyl)formamidate] (La{ κ^2 -(NPh)₂CH}₃). LaCl₃ (0.258 g, 1.05 mmol, 1 equiv.) and K[(NPh)₂CH] (0.738 g, 3.15 mmol, 3 equiv.) were combined to afford La{(NPh)₂CH}₃ (0.539 g, 68.7%) as a pale-yellow solid. ¹H NMR (600 MHz, benzene-*d*₆): δ 8.62 (s, 3 H, formyl), 7.26 (t, ³*J*_{HH} = 7.2 Hz, 12 H, *meta*-C₆H₅), 6.93 (m, 18 H, *ortho/para*-C₆H₅). ¹³C{¹H} NMR (151 MHz, benzene-*d*₆): δ 160.4 (formyl), 153.6 (*ipso*-C₆H₅), 129.8 (*meta*-C₆H₅), 120.8 (*para*-C₆H₅), 120.3 (*ortho*-C₆H₅). IR (KBr, cm⁻¹): 3051 w, 3020 w, 1679 w, 1650 m, 1558 m, 1529 s, 1476 s, 1385 w, 1324 s, 1220 m, 1205 m, 1170 m, 1152 w, 1075 w, 1024 w, 986 s, 917 w, 887 w, 831 w, 804 w, 764 s, 697 s, 619 w, 594 w, 524 m. Anal. Calcd for C₃₉H₃₃N₆La: C, 64.64; H, 5.59; N, 11.60. Found: C, 64.51; H, 5.57; N, 11.22.

Scandium tris[*N*,*N*'-bis(phenyl)formamidate] (Sc{ κ^2 -(NPh)₂CH}₃). ScCl₃ (0.157 g, 1.04 mmol, 1 equiv.) and K[(NPh)₂CH] (0.731 g, 3.12 mmol, 3 equiv.) afforded Sc{ κ^2 -(NPh)₂CH}₃ (0.431 g, 65.7%) as a pale-yellow solid. ¹H NMR (600 MHz, benzene-*d*₆): δ 8.27 (broad singlet, 3 H, formyl), 7.08 (t, ³*J*_{HH} = 7.8 Hz, 12 H, *meta*-C₆H₅), 6.90 (m, 18 H, *ortholpara*-C₆H₅). ¹³C{¹H} NMR (151 MHz, benzene-*d*₆): δ 154.2 (br, formyl C-H), 146.4 (br, *ipso*-C₆H₅), 129.5 (*meta*-C₆H₅), 123.4 (*para*-C₆H₅), 119.8 (*ortho*-C₆H₅). IR (KBr, cm⁻¹): 3053 w, 2029 w, 2918 w, 2852 w, 1651 s, 1587 s, 1524 s, 1487 s, 1384 m, 1287 s, 1225 m, 1208 w, 1172 w, 1154 w, 1076 w, 1026 w, 999 w, 986 w, 953 w, 898 w, 806 w, 756 s, 695 s. Anal. Calcd for C₃₉H₃₆N₆Sc: C, 74.27; H, 5.27; N, 13.33. Found: C, 73.95; H, 5.21; N, 13.56.

3. Supplementary Tables and Figures

Figure S1. Specialised NMR pulse sequences used in the study: (a) PARS, (b) PDLF, and (c) TQ/SQ.

Figure S2. Representative process for obtaining cosine-transformed 2D separated local field spectra. Inverted (b) and non-inverted (a) QF-processed 2D spectra and their sum (c), which is mathematically equivalent to a pure-cosine transformation when no phase corrections are applied. PARS and PDLF data are pure cosine modulated and are best represented by cosine-transformations. The red dashed line indicates the area from which the slices shown to the right are taken.

Figure S3 Geometry-optimized DFT cluster model structure of Sc{κ²-(NPh)₂CH}₂/SiO₂

Table S1. Silanol content in partially dehydroxylated silica.

Silica	SiOH (mmol/g)	-OH nm ⁻²
Davisil, Grade 643, 150 Å	0.094 ± 0.0056	0.095
Davisil, Grade 635, 60 Å	0.62 ± 0.0092	1.44
Davisil Grade 923, 30 Å	0.41 ± 0.028	0.53
Davisil, Grade 12, 22 Å	0.097 ± 0.0065	0.094

Table S2: ¹H NMR determined metal loadings.^a

Silica	Y{κ ² -(NPh)₂CH}₃	La{κ²-(NPh)₂CH}₃	Sc{κ ² -(NPh) ₂ CH} ₃	Sc{κ ² -(N <i>i</i> Pr) ₂ CH} ₃
Davisil, Grade 643, 150 Å			0.062 ^b	
Davisil, Grade 635, 60 Å	0.253	0.225	0.254	0.473
Davisil, Grade 923, 30 Å			0.170	
Davisil, Grade 12, 22 Å			0.018 ^b	

^ammol/g

^bNote that these two silica materials have lower OH densities, which led to lower metal loadings, see **Table S1**.

Table S3. BET determined surface area and pore volume of the bare Davisil-type silicas and those measured after grafting $Sc{\kappa^2-(NPh)_2CH}_{3.a}$

Silica	Ungrafted Surface Area ^a	Grafted Surface Area ^a	Ungrafted Pore volume ^b	Grafted Pore Volume ^b
Davisil, Grade 643, 150 Å	599.0	488.4	0.3099	0.2583
Davisil, Grade 635, 60 Å	258.9	286.8	0.8928	0.7599
Davisil, Grade 923, 30 Å	462.1	345.4	0.3397	0.2535
Davisil, Grade 12, 22 Å	621.2	472.1	0.3017	0.2475
am^2/a bcm ³ /a				

^am²/g, ^bcm³/g

Figure S4. ¹H NMR spectrum of N,N'-bis(phenyl)formamidine-¹³C₁₃ (chloroform-*d*).

Figure S5. ¹³C{¹H} NMR spectrum of N,N'-bis(phenyl)formamidine-¹³C₁₃ (chloroform-*d*).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S9.** ¹³C{¹H} NMR spectrum of Y{κ²-(NPh)₂CH-¹³C₁₃}₃ in benzene- d_6 .

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S11**. ${}^{13}C{}^{1}H$ NMR spectrum of La{κ²-(NPh)₂CH- ${}^{13}C_{13}$ } in benzene-*d*₆.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) Figure S13 ¹³C{¹H} NMR spectrum of Sc{ κ^2 -(NPh)₂CH-¹³C₁₃}₃ in benzene- d_6 .

f1 (ppm)

-10

Figure S14. Infrared spectrum of $Y{\kappa^2-(NPh)_2CH}_3$ (KBr).

Figure S15. Infrared spectrum of La{ κ^2 -(NPh)₂CH}₃ (KBr).

Figure S16. Infrared spectrum of $Sc{\kappa^2-(NPh)_2CH}_3$ (KBr).

Figure S17. DRIFTS of SiO_{2,22Å} and Sc{ κ^2 -(NPh)₂CH}₂/SiO_{2,22Å}.

Figure S18. DRIFTS of SiO_{2,30Å} and Sc{ κ^2 -(NPh)₂CH}₂/SiO_{2,30Å}.

Figure S19. DRIFTS of SiO_{2,60Å}, Y{ κ^2 -(NPh)₂CH}₂/SiO_{2,60Å}, Sc{ κ^2 -(NPh)₂CH}₂/SiO_{2,60Å}, Sc{ κ^2 -(NiPr)₂CH}₂/SiO_{2,60Å}, and La{ κ^2 -(NPh)₂CH}₂/SiO_{2,60Å}.


```
Figure S20. DRIFTS of SiO<sub>2,150Å</sub> and Sc{\kappa^2-(NPh)<sub>2</sub>CH}<sub>2</sub>/SiO<sub>2,150Å</sub>.
```

3. DFT Calculations

3.1. Example ADF input file

The list of constraints and atomic coordinates are omitted for clarity.

#!/bin/sh

```
"$AMSBIN/ams" << eor
Task GeometryOptimization
Constraints
   [placeholder]
End
System
    Atoms
    [placeholder]
    End
End
Engine ADF
    Basis
        Type TZP
        Core None
        PerAtomType Symbol=Sc File=ZORA/TZ2P+/Sc
    End
```

```
Save TAPE10
XC
Hybrid PBE
Dispersion Grimme4
End
Relativity
Level Spin-Orbit
End
Symmetry NOSYM
NumericalQuality VeryGood
EndEngine
eor
```

3.2. Geometry optimized coordinates of $Sc{\kappa^2-(NPh)_2CH}_2/SiO_2$ 70 C20421N404ScSi optimized with ADF in AMS.

C29H3	IN404ScSi optimizea with	ADF IN AMS.	
С	13.48138496761232	16.78676126217711	10.60468429496014
Н	11.13721324669378	15.87385684142458	12.46945349074984
Н	13.91854224292237	20.15905145038104	10.90910712551451
Ν	15.04113659646595	17.46481565033228	16.29935609347080
Н	16.92877332971764	18.43557885111280	16.00499194109601
н	12.91116285799560	11.41263586328272	16.06902330211137
н	16.14234856417730	15.06914912438902	13.18867206436716
н	11.80846652864611	12.65869676161256	16.72393901977540
Sc	13.71376697808648	17.24673438140375	14.56005973695993
С	14.14712203548459	17.76762965824577	8.49073068539501
н	13.52476848708381	19.73770886424871	16.95520592475728
н	15,00929478822638	14.19735303506831	12.10346312667041
н	9.81290543377408	14,96103941842600	13.24749765729765
н	17.25056016753526	17,47156003149151	17,92591381514087
N	12.79478993438279	19.23933539937147	14,49871432200476
C	12.31691070246747	12.30034727225807	15.81592078671244
Ċ	13,81336156828193	16.64711322379470	9,25900709362817
c	14 15727686863427	19 02894664513301	9 09365211742674
N	13 17057625804341	18 12813926765456	12 57773675638882
н	14 44260273035152	19 90865609978450	8 51296903730770
Ċ	13 83899596035112	19 1760/6726398//	10 //25698/682252
н	14 40876048071817	17 6573/82990//65	7 /371061615628/
Ċ	10 726800037/3200	1/ 86787/18/81/13	12 6/32//08072196
Ċ	13 /70//083550836	18 05516602/35672	11 217087612072190
L L	12 21960221061445	15 015200/24550/2	11 20640120729090
C	12 79071059556254	10 2576/25/602757	12 166107640237774
L L	12 00702220040760	15 65420909270440	0 00267762151221
	15,00/05220049/09	17 95460496572077	0.0050//02151551
	12,49041502126122		
н	12.48041503126133	20.15230663505781	12.59450072962543
0	11.6/051832943588	14.003/268916598/	13.30419///926160
Н	11.56656374439804	12.03008146326748	15.05836/46191/49
C	15.24291381/3/301	14.44328056111867	13.14929041891784
0	14.1600/494/94319	15.19400916883419	13./28/01/4/48310
H	10.47758349901193	14.41006301182204	11.67691978520941
51	12./311852/324095	14.58091803527058	14.423110408/21/2
0	12.29425208708063	15.9/119438966152	15.11888638468040
0	13.220/9540/92112	13.300/4/31/56619	15.3205099314/919
Н	15.40494837753957	13.52093246218170	13.72262299483539
C	16.03939319804608	17.95761549817708	15.55936122337590
Н	17.20287452872359	20.20532751919788	14.62733685500578
С	12.26870835689127	20.27115172436489	15.28286117074186
С	11.25869882202841	21.14234197270367	14.82946543266803
С	10.77843012365491	22.15464468639339	15.66012630685224
С	11.27477187222481	22.30722728659727	16.95803648843286
С	12.25963381023324	21.42836119951895	17.42114970630532
С	12.75329547320612	20.42081790514493	16.59595170653752
Н	10.82522775134784	21.0073777161059	13.83683024523748

Н	9.99237998844477	22.81894882024298	15.29468007382873
Н	10.88720083291513	23.09442559634797	17.60680311179208
Н	12.64877109341492	21.52729878162683	18.43655584306803
С	16.67824018444037	18.54367691740417	13.33272276299048
С	16.79777494697885	18.02790706463815	12.02886149640277
С	17.57342231718263	18.68128097551808	11.07484442828825
С	18.24722061236234	19.86345185033754	11.39807030210124
С	18.12105772010783	20.39274657394433	12.68595433905225
С	17.33655872084429	19.75040825011745	13.64401866439975
Н	16.26116795595771	17.11381698708145	11.77237982309699
Н	17.64369157308525	18.26736367273826	10.06710211213785
Н	18.85130784518669	20.37753248410873	10.64854258323650
Н	18.62051835376809	21.32947559226223	12,94273637828396
С	15.09087923134177	17.36388258487601	17.69233996674933
С	13.87356537319396	17.19822666259163	18.38155757609462
С	13.85262808597845	17.10448412249988	19.77093567317540
С	15.04148101789381	17.16821370354077	20.50533558007920
С	16.25533378941726	17.31127922016611	19.82684935171546
С	16.28821251541980	17.39999575824449	18.43536432682065
н	12.94699845779267	17.14035719956896	17.80644264433283
н	12.89763909911142	16.97957373494133	20.28539017502046
Н	15.02397761375724	17.09315695475397	21.59383636721335
Н	17.19297027509141	17.33908639218193	20.38622639659691

4. Supplementary References

1 M. Bak and N. C. Nielsen, REPULSION, A Novel Approach to Efficient Powder Averaging in Solid-State NMR, *J. Magn. Reson.*, 1997, **125**, 132–139.

2 M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, 2nd edn., 2008.