Supporting Information

Visualizing the fluorescence of AgPt NCs by an asymmetrical pseudo-ligand exchange method

Lizhong He $^{a,\,b\,*},$ Tingting Dong c, Xiaoyang Hu d and Zibao Gan $^{d\,*}$

a: School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, PR China;

b: Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, PR China;

Email: lzhe@xpu.edu.cn

c: School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.

d: School of Chemistry and Chemical Engineering, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000, PR China;

Email: ganzibao@lyu.edu.cn

1. Supporting Figures

Figure S1. The structures of (a) PPh₃ and (b) dppm, respectively.

Figure S2. TGA of Ag₁₆Pt NC.

Figure S3. XPS spectrum of $Ag_{16}Pt$ NC.

Figure S4. XPS spectrum of Ag_{3d} in the $Ag_{16}Pt$ NC.

Figure S5. XPS spectrum of Pt_{4f} in the $Ag_{16}Pt$ NC.

Figure S6. Bond lengths of (a) $Ag_{16}Pt$ and (b) $Ag_{26}Pt$ NCs, respectively.

Figure S7. Unit cell of the three-dimensional structure of the $Ag_{16}Pt$ NCs in a ball and stick model. Color codes: blue Ag, red Pt, yellow S, magenta P, gray C and White H.

Figure S8. Multilayer stacking structure of the Ag₁₆Pt NCs (viewed from X direction). Color code: blue Ag; red, Pt; yellow, S; magenta, P; gray, C; white, H.

Figure S9. Multilayer stacking structure of the Ag₁₆Pt NCs (viewed from Z direction). Color code: blue Ag; red, Pt; yellow, S; magenta, P; gray, C; white, H.

Figure S10. Multilayer stacking structure of the Ag₁₆Pt NCs (viewed from Y direction). Color code: blue Ag; red, Pt; yellow, S; magenta, P; gray, C; white, H.

Figure S11. The inter-nanocluster C-H^{\dots} π , and $\pi^{\dots}\pi$ interactions in the Ag₁₆Pt NCs. Color codes: red, Pt; blue, Ag; yellow, S; gray, green, brown and light blue, C; white, H.

Figure S12. The intra-nanocluster π ^{... π} interactions in the Ag₁₆Pt NC.

Figure S13. Electron densities of the HOMO, HOMO-1, HOMO-2 and LUMO, LUMO+1, LUMO+2 of the $Ag_{16}Pt$ and the $Ag_{26}Pt$ NCs.

Figure S14. Fluorescence decay profiles of the Ag₁₆Pt and the Ag₂₆Pt NCs.

Figure S15. The excitation spectra of $Ag_{16}Pt$ and $Ag_{26}Pt$ NCs, respectively.

Figure S16. The optical photographs of (a) $Ag_{26}Pt$ and (b) $Ag_{16}Pt$ NC crystals under 365 nm UV light irradiation.

2. Single crystal data

2.1 Single crystal data of Ag₁₆Pt NC

Empirical formula	$C_{148}H_{142}Ag_{16}Pt_1S_6P_8Cl_2$
Formula weight	4522.46
Temperature/ K	150
Wavelength	1.34139 Å
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	a = 18.450(6) Å α =75.225(11)
	b= 18.992(6) Å β =73.008(10)
	c = 29.482(9) Å γ =64.526(11)
Volume/ Å ³	8819(5)
Ζ	2
$\rho_{calc}g/cm^3$	1.703
µ/mm ⁻¹	12.134
F(000)	4388.0
Index ranges	-22<=h<=22, -23<=k<=23, -35<=l<=36
Reflections collected	127207
Independent reflections	33557 [$R_{int} = 0.0909, R_{sigma} = 0.0831$]
20 range for data collection	4.534°- 110.668°
Data / restraints / parameters	33557 / 3316 / 1691
Goodness-of-fit on F ²	1.093
Final R indices [I>2sigma(I)]	$R_1 = 0.0847, wR_2 = 0.2419$
R indices (all data)	$R_1 = 0.1073, wR_2 = 0.2624$
Extinction coefficient	n/a
Largest diff. peak and hole/ e Å-3	3.50 and -3.13