Supporting Information

Enhanced VIS-NIR Emission of Re⁴⁺ Doped Cs₂ZrCl₆ for Optical Thermometry and Near-Infrared Illumination Applications

Boya Li¹, Zheng Huang¹, Peiqing Cai^{1*}, Yuxin Zhan¹, Xuhui Feng¹, Xipeng Pu², Shala Bi^{3*}, Guanghua Wang⁴, Jie Zhang⁴, and Zugang Liu^{1*}

¹College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China.

²School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000, China.

³Department of Physics and Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University, Busan 608-737, Republic of Korea.

⁴Yunnan Olightek Opto-electronic Technology Co.,Ltd., Kunming 650223, China.

*Author to whom correspondence should be addressed. Email: <u>pqcai@cjlu.edu.cn (Peiqing</u> <u>Cai)</u>, BI1425820017@outlook.com (<u>Shala Bi)</u> and zgliu78@cjlu.edu.cn (Zugang Liu).

Samples	Zr ⁴⁺ : Re ⁴⁺ (Molar ratio)	Actual ratio of Re ⁴⁺ (mol%)
1	100:0.5	0.29
2	100:1	0.67
3	100:3	2.14
4	100:5	3.95
5	100:7	5.87

Table S1 Schemes of different molar ratios of Cs_2ZrCl_6 to Re^{4+} for the synthesis of $Cs_2ZrCl_6:Re^{4+}$ and the actual doping amount of Re^{4+} measured by the ICP-OES

Figure S1. (a) XRD patterns in the range of $23.5-25^{\circ}$ of Cs_2ZrCl_6 , (b) The experimental cell volumes of $Cs_2Zr_{1-x}Cl_6$: xRe^{4+} as a function of Re^{4+} concentration x.

Figure S2. (a) Decay curves and (b) the calculated decay data of pure Cs_2ZrCl_6 at the 80–290 K, (c) PLQY measurement of Cs_2ZrCl_6 under 270 nm excitation. (d) the curve of FWHM vs. temperature and the fitting result of Cs_2ZrCl_6 microcrystals.

Figure S3. (a) Excitation spectra of Cs_2ZrCl_6 : 3%Re⁴⁺ by monitoring different PL peak emissions, (b) DSR spectra of Cs_2ZrCl_6 : *x*%Re⁴⁺ at the high-energy range.

Figure S4. (a) PLE spectra of STE⁻ luminescence in Cs_2ZrCl_6 : $x^{0/2}Re^{4+}$ as a function of Re⁴⁺ doping concentration, (b) Comparison of Cs_2ZrCl_6 PL intensity and Re⁴⁺ PL intensity under 260 nm excitation.

Figure S5. PLQY of the Cs₂ZrCl₆: 3%Re⁴⁺ powder under 290 nm excitation.

Figure S6. The concentration-dependent decay curves of Cs_2ZrCl_6 : xRe^{4+} obtained by monitoring the 729 nm emission.

Figure S7. (a) Dependence of energy efficiency η_T on Re⁴⁺ doping concentration. (b) Dependence of I_{S0}/I_S of Cs₂ZrCl₆ on $C_{Re^{4+}}^2$, $C_{Re^{4+}}^{8/3}$ and $C_{Re^{4+}}^{10/3}$.

Figure S8. PL intensity variations of Cs_2ZrCl_6 : 3%Re⁴⁺ during the heating-cooling cycles.