Supporting Information

Insight into the effect of cerium dioxide nanoparticle modified cobalt phosphide as an efficient electrocatalyst for high-performance lithium-sulfur battery

Xiaofei Wang^a*, Ganfan Zhang^a, Yue Li^a, Yuanting Wu^a, Wei Luo^b*,

^a School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, PR China ^b Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

Email: wangxiaof@sust.edu.cn (X.F. Wang), https://www.uoweicxy@163.com (W. Luo)

Fig

ure S1 SEM images of the (a) Co(OH)₂, (b) Co(OH)₂/CeO₂-5, (c) Co(OH)₂/CeO₂-10, (d) Co(OH)₂/CeO₂-15.

Figure S2 SEM images of the (a) CoP/CeO_2-0 , (b) CoP/CeO_2-5 .

Figure S3 N₂ adsorption/desorption curves and pore size distributi on

curves.

Figure S4 The digital image of Li_2S_6 solutions before and after adding CoP/CeO₂-0, CoP/CeO₂-5, CoP/CeO₂-10 and CoP/CeO₂-15.

Figure S5 CV curves of Li-S batteries with CoP/CeO₂-0 (a), CoP/CeO₂-5 (b)

and CoP/CeO₂-15 (c) modified separators at 0.1 mV s⁻¹.

Figure S6 CV curves of Li-S batteries with CoP/CeO₂-0 (a), CoP/CeO₂-5 (b) and CoP/CeO₂-15 (c) modified separators at various scan rates. The corresponding linear fitting of the peak currents with the square root of the scan rate of Li-S batteries with CoP/CeO₂-0 (d), CoP/CeO₂-5 (e) and CoP/CeO₂-15 (f) modified separators.

Figure S7 Li₂S nucleation and dissolution curves of the battery using

 CoP/CeO_2-0 (a, d), CoP/CeO_2-5 (b, e) and CoP/CeO_2-15 (c, f).

Figure S8 Discharge-charge curves of Li-S batteries with CoP/CeO₂-0

(a), CoP/CeO₂-5 (b) and CoP/CeO₂-15 (c) modified separators at various

rates.

Table S1 The electrochemical performance of reported Li-S batteries

Material	Sulfur loading (mg cm ⁻²)	Initial capacities (mAh g ⁻¹) at various rate (C)	Cycle number	Capacity decay (per cycle)	Ref.
CMK-3@CeO ₂	2.8	1248 mAh g ⁻¹ at 0.5 C 1000 mAh g ⁻¹ at 1C	200 800	0.106% 0.039%	[1]
P-CeO ₂	1.0	620 mAh g ⁻¹ at 1C	500	0.100%	[2]
CC@CeO ₂ @Li ₂ S ₆	1.0	1311 mAh g ⁻¹ at 0.2 C	100	0.050%	[3]
CeO₂@G	1.2	610 mAh g ⁻¹ at 2 C	1000	0.024%	[4]
CeO₂@CNTs/S	1.0	1437.6 mAh g ⁻¹ at 0.1 C	300	0.170%	[5]
Li ₂ S-CGA/CeO ₂	2.0	591 mAh g ⁻¹ at 1 C	200	0.050%	[6]
CeO _{2-x} @CNF	1.0	1017 mAh g ⁻¹ at 2 C	800	0.046%	[7]
CoP-Co ₃ S ₄	1.1	1516.9 mAh g ⁻¹ at 0.2 C	100	0.51%	[8]
h-O-CoP-NCG	4.2	834 mAh g ⁻¹ at 0.5 C	300	0.048%	[9]
	2.0	1214.5 mAh g ⁻¹ at 0.2 C	500	0.0972%	This work
	4.0	1041.6 mAh g ⁻¹ at 0.2 C	100	0.01%	

containing CeO₂ and/or CoP.

Supplemental References

[1] Runlan Li, Qian Liu, Wenbo Yue, CeO₂ nanoparticles decorated CMK-3 as high-performance sulfur host for Li-S batteries, Journal of Alloys and Compounds 928 (2022) 167179, https://doi.org/10.1016/j.jallcom.2022.167179.

[2] Xuefeng Tao, Zhao Yang, Menghao Cheng, Rui Yan, Fan Chen, Sujiao Cao, Shuang Li, Tian Ma, Chong Cheng, Wei Yang, Phosphorus modulated porous CeO₂ nanocrystallines for accelerated polysulfide catalysis in advanced Li-S batteries, Journal of Materials Science & Technology 131 (2022) 212-220, https://doi.org/10.1016/j.jmst.2022.06.004.

[3] Zhen Wei, Junhao Li, Yifan Wang, Ruigang Wang, High-performance Li-S batteries enabled by polysulfide-infiltrated free-standing 3D carbon cloth with CeO₂ nanorods decoration, Electrochimica Acta 388 (2021) 138645, https://doi.org/10.1016/j.electacta.2021.138645.

[4] Pu Cheng, Pengqian Guo, Kai Sun, Yonggang Zhao, Dequan Liu, Deyan He, CeO₂ decorated graphene as separator modification material for capture and boost conversion of polysulfide in lithium-sulfur batteries, Journal of Membrane Science 619 (2021) 118780, https://doi.org/10.1016/j.memsci.2020.118780.

[5] Fengshuai Zhu, Mingang Zhang, Ling Wang, Xiangyu Cao, Synthesis and electrochemical performance of $CeO_2@CNTs/S$ composite cathode for Li-S batteries, Journal of Solid State Electrochemistry 25 (2021) 2625-2637, https://doi.org/10.1007/s10008-021-05033-6.

[6] Hao Yu, Xi Zhou, Peng Zeng, Changmeng Guo, Hong Liu, Xiaowei Guo, Baobao Chang, Manfang Chen, Jincang Su, Xianyou Wang, 3D Cellulose Graphene Aerogel with Self-Redox CeO_2 as Li_2S Host for High-Performance Li-S Battery, Energy Technol. 10 (2022) 2200616, <u>https://doi.org/10.1002/ente.202200616</u>.

[7] Qiao Hou, Kuandi Wang, Wenji Zheng, Xiangcun Li, Miao Yu, Helong Jiang, Yan Dai, Fangyi Chu, Xiaobin Jiang, Ding Zhu, Gaohong He, Eliminating bandgap between Cu-CeO_{2-x} heterointerface enabling fast electron transfer and redox reaction in Li-S batteries, Energy Storage Mater. 63 (2023) 102983, https://doi.org/10.1016/j.ensm.2023.102983.

[8] Donghong Duan, Kaixin Chen, Chongzhi Xing, Xiaoqiang Wang, Xianxian Zhou, Shibin Liu, Enhancing the polysulfide redox conversion by a heterogeneous CoP- Co_3S_4 electrocatalyst for Li-S batteries, J. Alloy. Compd. 961 (2023) 171099, https://doi.org/10.1016/j.jallcom.2023.171099.

[9] Xiaojun Zhao, Tianqi Gao, Yan Yuan, Zhao Fang, Hollow slightly oxidized CoP confined into flyover-type carbon skeleton with multiple channels as an effective adsorption-catalysis matrix for robost Li-S batteries, Electrochim. Acta 422 (2022) 140512, https://doi.org/10.1016/j.electacta.2022.140512.