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Experimental Section

Chemicals and materials: Nickel iron foam (NFF; thickness: 1.5 mm; number of pores 

per inch: 95 ppi; atomic ratio of Ni/Fe = 1:1), nickel foam (NF, 1.5 mm, 95 ppi), iron 

foam (FF, 1.5 mm, 95 ppi), were purchased from Kunshan Longshengbao Electronic 

Material Co., Ltd. (Note: The commercial NFF is heterogeneous but repeatable.) 

Potassium hydroxide (KOH, AR, 98%) and hydrochloric acid (HCl, AR, 36%) were 

purchased from Sinopharm Chemical Reagent Co., Ltd. Red phosphorous (P, AR, 

98.5%) were purchased from Aladdin Chemistry Co., Ltd.

Synthesis of o-NiFe foam: Prior to synthesis, 1×1.5 cm2 of commercial NiFe foam was 

washed with 1.0 M HCl solutions for 10 min, then rinsed with ultrapure water and dried 

with a hair dryer. Subsequently, the cleaned NiFe foam was immersed in a beaker 

containing 10 mM HCl solutions. After stirring and sonication for 5 min, the moist NiFe 

foam was removed and allowed to stand in air for 1 h. After rinsing with ultrapure water 

and drying with a hair dryer, o-NiFe foam was obtained. 

Synthesis of o-NiFeP/NFF, o-NiP/NF, and o-FeP/FF: Red phosphorus (50 mg) and 

four pieces of o-NiFe foam (1×1.5 cm2) were placed upstream (inlet) and downstream 

of the tube furnace. Subsequently, the samples were heated to 500 °C (10 °C/min) under 

a nitrogen atmosphere and held for 1 h. After cooling, the o-NiFeP/NFF pre-catalyst 

was obtained.

As comparison samples, o-NiP/NF and o-FeP/FF were prepared in the same way as 

o-NiFeP/NFF, except that Ni foam (NF) and Fe Foam (FF) were used as substrate 

materials, respectively.

Synthesis of NiFeP/NFF: NiFeP/NFF is prepared in a similar way to o-NiFeP/NFF, 

except that the NiFe foam without acid etching is directly used for phosphating 

treatment.

Characterizations: The morphologies and element contents were detected via double 

beam scanning electron microscope systems (SEM, Helios Nanolab G3 UC), which 

equipped with an Energy Dispersive X-ray detector (EDS, Team Octane Plus), as well 

as Inductively coupled plasma mass spectrometry (ICP-MS, Agilent 720ES). X-ray 

diffraction (XRD) and Transmission electron microscopy (TEM) characterizations 



were carried out on a Rigaku-TTRIII and a TecnaiG2 20ST, respectively. All XPS 

spectra were obtained on X-ray photoelectron spectrometer (XPS, K-Alpha 1063) and 

corrected using C1s line at 284.8 eV. Raman measurements were performed on a micro-

Raman spectrometer (DXR3) under an excitation of 532 nm laser light. 

Electrochemical measurements: All the OER catalytic measurements were carried out 

on a CHI660E electrochemistry workstation in 1.0 M KOH electrolyte with a typical 

three-electrode system, in which the as-prepared electrocatalyst with geometric area of 

1×1 cm2 soaked into electrolyte as the working electrode, a Pt sheet as the counter 

electrode, and an Ag/AgCl electrode as the reference electrode. Then the RHE 

potentials in the three electrolytes were determined from the corresponding open-circuit 

potentials (-1.015 V for 1.0 M KOH). The electrode potential was converted to the RHE 

scale using E (vs. RHE) = E (vs. Ag/AgCl) + 1.015 V for the measurements in 1.0 M 

KOH electrolyte. The overpotential (η) was calculated by η = E (vs. RHE) -1.23 V for 

OER.

200 cyclic voltammetry (CV) scans (50 mV s-1, 0-0.8 V vs. Ag/AgCl) were applied 

to remove the surface contaminants and electrochemically activate the catalysts to 

achieve a relatively stable performance before linear sweep voltammetry (LSV) 

measurements. LSV was recorded at a scan rate of 5 mV s-1 with iR-correction (90%). 

200 CV scans (50 mV s-1, 0-0.1 V vs. Ag/AgCl) were applied before investigating 

surface reconstruction affected by CV activation in OER. Cyclic voltammetry (CV) 

tested at different scan rates for obtaining electrochemical double layer capacitance 

(Cdl) values; Electrochemical impedance spectroscopy (EIS) tests were carried out 

from 100 kHz to 10 mHz.

The Tafel slope was calculated by the equation below:

𝜂 = 𝑎 + 𝑏𝑙𝑜𝑔(𝑗)

Where η stands for the overpotential, b stands for the Tafel slope, j stands for the 

current density.



First-principles calculations

The spin-polarized Density functional theory (DFT) calculations were performed to study 

catalytic mechanism in VASP1, 2 with a projector augmented wave (PAW) basis3. The Perdew-

Burke-Ernzerhof (PBE) Generalized Gradient Approximation (GGA) exchange-correlation 

functional method was used to describe the exchange-correlation interaction. For all the 

calculations, the kinetic energy cutoff for electronic plane wave expansion was set to 450 eV. 

Brillouin zone integration was performed on grids Γ-centered 3×3×1 k-points-grids for the 

structural relaxation and  electronic structure calculations. The DFT/GGA+U were performed (Fe 

3d and Ni 3d were 4 and 3 eV) to consider to strong correction interaction4. Moreover, the dispersive 

van der Waals (vdW) interactions were also taken into account by the zero damping DFT-D3 

method with Becke-Jonson damping5, 6. Total energy and the forces on each atom were converged 

to less than 10−6 eV and 0.03 eV/Å, respectively. The vacuum layer of around 15 Å along z direction 

was inserted to eliminate the spurious interaction between periodic images. The Gibbs free energy 

change was calculated7, 8: 

Δ𝐺= Δ𝐸+ Δ𝐸𝑍𝑃𝐸 ‒ 𝑇Δ𝑆+ Δ𝐺𝑝𝐻+ Δ𝐺𝑉

where  is the reaction energy.  and  are the change in the zero-point energy and the Δ𝐸 Δ𝐸𝑍𝑃𝐸 Δ𝑆

vibrational entropy at temperature T, respectively.  is the correction from Δ𝐺𝑝𝐻= 𝑘𝐵𝑇 × 𝑝𝐻 × ln 10

the proton concentration as indicated by the pH value, where  is the Boltzmann constant. 𝑘𝐵

 is the correction from the applied electrode potential (V). Here, the standard conditions Δ𝐺𝑉= 𝑒𝑉

were adopted, i.e., pressure  bar,  and  K. The (0001) surface of Ni2-xFexP 𝑝= 1 𝑝𝐻= 14 𝑇= 298.15

(x=0~0.33) and (01 2) surface of NiFeOOH with Fe-rich and Ni-rich have been select to study the 1

catalytic properties, as shown in Figure S4. 



Figure S1 SEM images and surface element mappings of (a) NiFe foam, (b) o-NiFe 

foam, (c) NiFeP/NFF after 200 cycles of CV, and (d) o-NiFeP/NFF after 200 cycles of 

CV.



Figure S2. Nyquist plots of o-NiP/NF, o-FeP/FF, o-NiFeP/NFF, and NiFeP/NFF. 



Figure S3. CV curves of (a) o-NiP/NF, (b) o-FeP/FF, (c) o-NiFeP/NFF, and (d) 

NiFeP/NFF samples obtained at 50, 100, 150 and 200 mV s-1 in the range of 0-100 mV 

vs. Ag/AgCl.



Figure S4. The top and front view of Ni2-xFexP (a-b) and Fe(Ni)-rich upper (lower) surface of 

NiFeOOH (c-d). 1-4 mean the NiFe hollow site, Ni hollow site, Fe-top site and Ni-top site for OH 

adsorption.



Figure S5. SEM images of o-NiFeP/NFF after being immersed in a 1.0 M potassium 

hydroxide solution



Figure S6. The SEM image of o-NiFeP/NFF after 468h testing



Figure S7. The XRD pattern of o-NiFeP/NFF after 468h testing.



Table S1 The generating mass of Ni2+/Fe2+ along with the etching time when 1×1.5 

cm2 NiFe foam being soaked in 1.0 M HCl solutions by ICP-OES.

Dissolution time mFe (mg) mNi (mg) ΔmFe/ΔmNi

t=10 min 0.99 0.11 9/1

t=20 min 1.80 0.20 9/1

t=30 min 2.43 0.27 9/1

All dissolved 23.78 19.91 1.20/1

Table S2 The elemental weight percentages measured from EDS.

Atomic Percentage (At%)
Sample

Ni Fe Fe/Ni+Fe P O

NiFe foam 96.14 3.13 0.032 - 0.71

o-NiFe foam 76.98 18.41 0.193 - 4.60

NiFeP/NFF 65.88 3.78 0.054 12.39 1.90

o-NiFeP/NFF 64.06 16.03 0.200 13.45 6.46

NiFeP/NFF after 200 cycles 71.97 3.68 0.048 13.09 11.25

o-NiFeP/NFF after 200 cycles 58.89 22.50 0.276 7.60 11.00



Table S3 Parameters obtained from the fitted plots using the relevant equivalent circuit. 

Samples Rct (Ω) CPE-T (F) CPE-P (F)

o-NiP/NF 1.146 1.126 0.596

o-FeP/FF 13.69 0.023 0.558

o-NiFeP/NFF 0.369 1.625 0.694

NiFeP/NFF 0.479 0.554 0.699



Table S4 Tafel slope comparison of NiFe based oxides, layered double hydroxides, and 

phosphides for OER.

Samples Electrolytes Tafel slope (mV dec-1) Ref.

NiFe2O4 1 M KOH 42 9

NiFeOx/CFP 1 M KOH 32 10

α-FeNiOx 0.1 M KOH 24 11

NiFeOx NTAs 1 M KOH 47 12

Ni60Fe40Ox 0.1 M KOH 34 13

O-NiFeLDH/NF 1 M KOH 29 14

NiFe-LDH 1 M KOH 40 15

FeNi-rGO LDH 1 M KOH 39 16

NiFeLDH-NS@DG/GCE 1 M KOH 52 17

Ni2P/C@NF 1 M KOH 65 18

NiCoFeP 1 M KOH 83 19

NiFe-P/NF 1 M KOH 59 20

(Ni0.5Fe0.5)2P/NF 1 M KOH 57 21

(Ni0.87Fe0.13)2P/Ni 1 M KOH 96 22

Ni2P/(NiFe)2P(O)NA/NF 1 M KOH 60 23

Table S5 Calculated binding energy of OH on different sites of Ni2-xFexP .(eV)

Models NiFe-hollow Ni-hollow Fe-top Ni-top

Ni2P x -3.93 x -2.17

Ni1.92Fe0.08P -4.27 -3.94 -3.17 -2.22

Ni1.66Fe0.33P -4.29 -3.97 -3.20 -2.28
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