Au depositing and Mg doping synergistically regulates In2O³ photocatalyst for promoting CO² reduction and CH⁴ exclusive generation

Yanduo Liu^{a,*}, Jiadong Li^{b,*}, Xianglan Dong^a, Lina Dai^a, Enqi Zhang^a

^a School of Chemistry and Chemical Engineering, Harbin Normal University,

Harbin150025, Heilongjiang, China. E-mail: liuyd0608@163.com

^b School of New Energy, Ningbo University of Technology, Ningbo315336, Zhejiang,

China. E-mail: lijd@nbut.edu.cn

***Corresponding Authors.**

E-mail addresses: liuyd0608@163.com (Yanduo Liu), lijd@nbut.edu.cn (Jiadong Li)

Characterization techniques

A Bruker D8 Advance diffractometer was used to analyze the X-ray powder diffraction (XRD) using Cu Kα radiation. A Model Shimadzu UV-2750 spectrophotometer was adopted to record the UV-vis diffuse reflectance spectrum (DRS) by using with BaSO⁴ as a reference. Morphologies of samples were observed by using a scanning electron microscope (SEM, HitachiS-4800 instrument, Tokyo, Japan) and Transmission electron microscopy (TEM, JEOL JEM-2010EX instrument), operating at acceleration voltage of 15 kV and a 200 kV accelerating voltage, respectively. A self-built equipment was applied to detect the steady-state surface photovoltage spectroscopy (SS-SPS), equipped with a lock-in amplifier (SR830, USA) synchronized with a light chopper (SR540, USA). A Kratos-Axis Ultra DLD apparatus with an Al (mono) X-ray source was used to measure the X-ray photoelectron spectroscopy (XPS). All the XPS spectra were calibrated according to the C 1s peak at 284.8 eV. The electron paramagnetic resonance (EPR) measurements were carried out on a Bruker EMX plus model spectrometer operating at the X-band frequency. The near ambient pressure (NAP)-XPS spectra were collected at the SPECS NAP-XPS. The light irradiation was introduced into the analysis chamber through an observation window using a 300 W xenon lamp.

Photoelectrochemical measurement

Using a conventional electrochemical workstation that had a standard threeelectrode electro-chemical system tested the photoelectrochemical measurements (CHI760E, Shanghai). The film electrode was fabricated as follows: 50 mg of photocatalyst and 35 mL of terpineol were stirred vigorously to prepare the

experimental electrode. Then, the mixture was coated onto the FTO electrode and then calcined at 200 °C for 120 min. The working electrode, Pt plate and Ag/AgCl electrode were taken as the working electrode, the counter electrode and the reference electrode on a LK2006 A workstation, respectively. 1 M KOH solution was used as electrolyte and a 300W Xenon lamp (wavelength range: 320-780 nm, spot diameter: 60 mm, light power: 134 mW/cm²) with a 420 nm cut off filter was used as light source. Mott-Schottky tests were conducted at frequencies of 500, 1000 and 1500 Hz.

Hydroxyl radical amount measurement

0.05 g of the sample was dispersed in 60 mL of 1×10^{-3} mol L⁻¹ aqueous solution in a quartz reactor. The suspension was stirred for 30 min before irradiation. After a given irradiation time with a spectrofluorometer (PerkinElmer LS 55), a certain amount of the solution was transferred into a Pyrex glass cell for the fluorescence measurement of 7-hydroxycoumarin with characteristic emission peak at about 460 nm under the light excitation of 332 nm.

Evaluation for CO² temperature programmed desorption

 $CO₂$ -temperature programmed desorption $(CO₂-TPD)$ were performed by Chemisorption Analyzer, TP 5080 Chemisorb with a thermal conductivity detector (TCD). 50 mg sample was preheated at 300 °C for 0.5 h to remove the other adsorbed gases and water and then cooled down to 30 °C under He flow rate of 30 mL min-1 . The pure CO_2 gas was introduced at 30 °C under CO_2 flow rate of 50 mL min⁻¹ for 0.5 h. The excess weak physically adsorbed O_2 was removed by He flow rate of 30 mL min⁻¹ at 30 °C for 60 min. Then the temperature was increased to 400 °C with the heating rate of 10 °C min⁻¹ under He flow rate of 30 mL min⁻¹.

In situ DRIFTS measurements

The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

analysis was carried out in an in situ diffuse reflectance pool with a Bruker Vector FTIR spectrometer (6700) and MCT detector which was cooled by liquid N_2 . Firstly, a certain amount of KBr was filled into the reaction cell, and then covered with 0.2 g catalyst. The reaction cell was placed in the test chamber and heated to 175 °C under N_2 flow for 30 min to remove adsorbed impurities and then cooled to room temperature. In order to simulate the photocatalytic CO_2 reduction process, the CO_2 and H_2O were passed into the reaction cell. In this condition, a certain amount of $CO₂$ and $H₂O$ could be adsorbed on the surface of sample and then purged with N_2 . Subsequently, the sample was irradiated under visible light. A 300 W Xenon arc lamp was used as the light source.

Fig. S1. TEM images of $2Mg$ -In₂O₃.

Fig. S2. XRD patterns of In_2O_3 , xMg-In₂O₃ and yAu/2Mg-In₂O₃ samples.

Fig. S3. (a) In 3d XPS spectra, (b) O 1s XPS spectra, (c) Mg 2p XPS spectra, and (d) Au 4f XPS spectra of In₂O₃, 2Mg-In₂O₃ and 4Au/2Mg-In₂O₃ samples.

Fig. S4. Time-dependent photocatalytic O₂ and CH₄ production over $4Au/2Mg-In₂O₃$ under light irradiation of 10 h.

Fig. S5. (a) XRD patterns and (b) DRS spectra of $4Au/2Mg-In₂O₃$ at different stages.

Fig. S6. (a) SS-SPS spectra, (b) Fluorescence spectra related to the formed ·OH amounts, (c) EIS spectra and (d) I–V curves under irradiation with UV–Vis light over In_2O_3 , $2Mg-In_2O_3$ and 4Au/2Mg-In₂O₃ samples.

Fig. S7. DRS spectra of In_2O_3 , $xMg-In_2O_3$ and $yAu/2Mg-In_2O_3$ samples.

Fig. S8. (a) CO_2 -TPD curves and (b) CO_2 adsorption–desorption isotherms of In_2O_3 , $2Mg-In_2O_3$ and 4Au/2Mg-In₂O₃ samples.

Table S1. Photocatalytic activity of CO₂ reduction conversion over different samples.

Catalyst	Rate of product $(\mu mol/g/h)$			$CH4$ selectivity
	CO ₁	CH ₄	O ₂	$(\%)$
In_2O_3	15.7	2.1	12.5	11.8
$0.5Mg-In2O3$	17.3	$\overline{2}$	13.1	10.4
$1Mg-In2O3$	1.5	9.6	20.7	86.5
$2Mg-In2O3$	0	12.7	26.2	100
$2Au/2Mg-In2O3$	0	19.2	40.1	100
$4Au/2Mg-In2O3$	0	24.5	51.2	100
$8Au/2Mg-In2O3$	0	22.1	45.3	100

Catalysts	Production rate of CO $(\mu \text{mol/g/h})$	Production rate of CH ₄ $(\mu \text{mol/g/h})$	References
$4Au/2Mg-In2O3$		24.50	this work
$In_2O_3(\partial_{0}InP_{60}/Cu_2O-1)$	2.74	7.76	[S1]
20ZFO/10RGO/IO	8.85	1.95	[S2]
$Cu-In2O3/C$	43.70	15.90	[S3]
H-CeO _{2-x} $@In_2O_{3-x}$	9.67	1.95	[S4]
$NH2-UiO-66/Au/In2O3$	8.56	0.19	[S5]
WO_3/In_2O_3	6.60	5.40	[S6]
$In_2O_3(aTiO_2-10)$	1.50	11.10	[S7]

Table S2. The comparison of catalytic performance with representative state-of-the-art photocatalysts for photocatalytic reduction of CO2.

Table S3. Photocatalytic activity of CO_2 reduction conversion over $4Au/2Mg-In_2O_3$ for 10 h.

Time	Rate of product $(\mu \text{mol/g/h})$			$CH4$ selectivity
	CO	CH ₄	O ₂	$(\%)$
1	$\boldsymbol{0}$	24.5	51.2	100
$\overline{2}$	θ	44.8	106.4	100
3	$\boldsymbol{0}$	77.5	159.6	100
4	$\boldsymbol{0}$	102.0	200.7	100
5	$\boldsymbol{0}$	118.3	253.9	100
6	$\boldsymbol{0}$	142.9	315.3	100
7	$\boldsymbol{0}$	165.4	358.4	100
8	$\boldsymbol{0}$	183.7	415.6	100
9	0	206.3	454.7	100
10	0	228.8	501.9	100

Time	Rate of product (µmol/g/h)			$CH4$ selectivity
	CO	CH ₄	O ₂	$(\%)$
$\mathbf{1}$	$\boldsymbol{0}$	24.5	51.2	100
$\overline{2}$	$\boldsymbol{0}$	25.2	51.4	100
3	$\boldsymbol{0}$	25.4	51.8	100
$\overline{4}$	$\boldsymbol{0}$	24.3	50.9	100
5	$\boldsymbol{0}$	25.2	52.1	100
6	$\boldsymbol{0}$	24.1	51.7	100
7	$\boldsymbol{0}$	23.9	51.3	100
8	$\boldsymbol{0}$	25.4	50.6	100
9	$\boldsymbol{0}$	25.3	50.9	100
10	$\boldsymbol{0}$	24.3	51.5	100
11	$\boldsymbol{0}$	24.1	51.9	100
12	$\boldsymbol{0}$	24.9	50.9	100
13	$\boldsymbol{0}$	23.8	51.7	100
14	$\boldsymbol{0}$	25.7	51.4	100
15	$\boldsymbol{0}$	25.2	52.5	100
16	$\mathbf{0}$	25.1	50.7	100
17	$\boldsymbol{0}$	24.6	50.1	100
18	$\boldsymbol{0}$	23.7	50.9	100
19	$\boldsymbol{0}$	24.3	51.5	100
$20\,$	$\boldsymbol{0}$	24.1	51.6	100

Table S4. Photocatalytic activity of CO_2 reduction conversion over $4Au/2Mg-In₂O₃$.

References

- [S1] Y. Wang, J. Xu, J. Wan, J. Wang, L. Wang. J. Colloid Interface Sci. 2022, 616, 532-539.
- [S2] J. Li, F. Wei, C. Dong, W. Mu, X. Han. J. Mater. Chem. A. 2020, 8, 6524-6531.
- [S3] A. Zhou, C. Zhao, J. Zhou, Y. Dou, J. Li, M. Wei. J. Mater. Chem. A. 2023, 11, 12950-12957.
- [S4] Q. Xu, J. Jiang, X. Wang, L. Duan, H. Guo. Rare Met. 2023, 42, 1888-1898.
- [S5] X. Li, C. Fang, L. Huang, J. Yu. J. Colloid Interface Sci. 2024, 655, 485-492.

[S6] Y. He, Z. Yang, J. Yu, D. Xu, C. Liu, Y. Pan, W. Macyk, F. Xu. J. Mater. Chem. A. 2023, 11, 14860-14869.

[S7] Y. Wang, W. He, J. Xiong, Z. Tang, Y. Wei, X. Wang, H. Xu, X. Zhang, Z. Zhao, J. Liu. Fuel. 2023, 331, 125719.