1 Effect of Fe-doping induced by valence modulation engineering on

2 nickel hydroxylfluoride cathode of hybrid supercapacitors

- 3 Yutong Zhao^a, Zeshuo Meng^a, Jian Xu^a, Zhengyan Du^a, Zeyu Hao^a, Shulong Wang^a,
- 4 Hongwei Tian^{a, *}, Zhiqiang Niu^b, Dawei Su^c
- 5 ^a Key Laboratory of Automobile Materials of MOE, School of Materials Science and
- 6 Engineering, Jilin University, Changchun, 130012, China
- 7 E-mail: tianhw@jlu.edu.cn (H. Tian)
- 8 ^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),
- 9 Nankai University, Tianjin, 300071, China
- 10 ° Applied Chemistry and Environment Science, School of Science, STEM College,
- 11 RMIT University, Melbourne VIC 3000, Australia.

12

14 **Figure S1.**F 1s XPS spectra of NHF–x.

17 Figure S2.SEM images of (a), (b) NHF–0.01 and (e), (f) NHF–0.05.

- 19 Figure S3.Selected area electron diffraction (SAED) images of (a) NHF and (b) NHF-
- 20 0.03.

22 Figure S4.Nitrogen sorption-desorption isotherms of (a) NHF, (b) NHF -0.03. pore

23 size distributions of (c) NHF, (d) NHF -0.03.

25 Figure S5.GCD curves of NHF–0.03 at different current densities.

27 Figure S6. CV cycles of NHF-0.03 of different numbers.

29 Figure S7. GCD curves of NHF-0.03 of different numbers of CV cycles.

30

32 Figure S8. The Raman spectra of NHF-0.03 in the state of charged after different

35 Figure S9. The Raman spectra of NHF-0.03 in the state of discharged after different
36 number of cycles.

37 At the beginning of the cycle, the electrode material does not have a complete phase transition and is still in the activation stage, so the NiOOH content in the charging state 38 is insufficient and the characteristic peaks of the Raman spectra are not obvious^{1, 2}. 39 Similarly, the characteristic peaks of Raman spectra of Ni(OH)₂ in the discharged state 40 are not obvious³. During the stabilization phase of the cycle, the phase transition is 41 complete and the electrode material can be well transformed between NiOOH and 42 Ni(OH)₂ during charging and discharging, and the presence of the two substances can 43 be clearly seen in the Raman spectra. After stabilisation, the electrode capacity 44 decreases again, which can be attributed to the structural collapse and poorer 45 crystallinity of the electrode material after a long cycling process, resulting in poorer 46 energy storage performance than in the stabilisation phase⁴⁻⁷. 47

50 Figure S10.XRD pattern of NHF-x after long-term cycling.

52 Figure S11.TEM images of (a)NHF, (b) NHF–0.03, and HRTEM images of (c) NHF,

53 (d) NHF–0.03 after long-term cycling.

56 Figure S12. (a) SEM images, and (b-e) Element mapping images of NHF.

57

59 Figure S13. (a) SEM images, and (b-f) Element mapping images of NHF–0.03.

62 Figure S14. (a) SEM images, and (b-e) Element mapping images of NHF after long-

64

65

66 Figure S15. (a) SEM images, and (b-e) Element mapping images of NHF-0.03 after

67 long-term cycling.

70 Figure S16. (a) CV curves and (b) GCD curves spectra of AC.

72 Figure S17. CV plots (at 5 mV s⁻¹) of NHF-0.03//AC device at various potential

73 windows.

76 Figure S18. Coulombic efficiency for 10,000 cycles at 15 A g^{-1} of the NHF-0.03//AC

77 ASC.

79 Figure S19. (a) CV curves (5 mV s⁻¹) at various potential windows, (b) CV plots at 1–

80 20 mV s⁻¹, and (c) GCD curves at 0.5–15 A g⁻¹ of the designed NHF–0.03//Bi₂O₃ 81 device.

82

83

84 Figure S20. (a) CV curves (5 mV s⁻¹) at various potential windows, (b) CV plots at 1–

85 20 mV s^-1, and (c) GCD curves at 0.5–15 A g^{-1} of the designed NHF–0.03// $\rm Bi_2O_3$

86 device. (Nickel foam is used as current collector).

88 Figure S21. GCD curves spectra at 1A g⁻¹ of NHF–0.03 on Ni foam.

90 Figure S22. (a) CV plots at 1-10 mV s⁻¹ and (b) GCD curves at 1-10 A g^{-1} of Bi_2O_3 on

91 Ni foam.

92

87

93 Table S1. Fe/Ni atomic ratios of NHF-x samples by ICP-OES.

Sample x value	0.01	0.03	0.05
Fe/Ni	0.01	0.02	0.05
(Raw material ratio)	0.01	0.05	0.05
Fe/Ni (by ICP-OES)	0.0091	0.0180	0.232

Table S2. Fe^{2+}/Fe^{3+} and Ni^{2+}/Ni^{3+} ratio of NHF-x (x=0,0.01,0.03,0.05).

	NHF	NHF-0.01	NHF-0.03	NHF-0.05
Ni ²⁺ / Ni ³⁺	1.212	1.611	1.739	1.749
${\rm F}e^{2+}/{\rm F}e^{3+}$		1.035	0.991	0.952

Table S3. Charge and discharge time of NHF-0.03 of different numbers of CV cycles.

Cycle numbers time	20	40	60	80
Charge time(s)	1158	874	756	642
Discharge time(s)	673	636	668	633

99 Table S4. EIS impedance spectrum fitting data for prepared electrodes.

Electrode	$\operatorname{Rs}(\Omega)$	$\operatorname{Rct}(\Omega)$	$Zw(\Omega S^{-1/2})$
NHF	0.98	3.31	0.31
NHF-0.01	1.07	2.22	0.27
NHF-0.03	1.12	1.35	0.25
NHF-0.05	1.10	1.91	0.35

Table S5. F atomic ratios of NHF and NHF–0.03 before and after long-term cycling.

At% (F)	NHF	NHF-0.03	
Before cycle	32	33.4	
After cycle	1.4	4.3	

103 **Table S6.** NHF–0.03//AC energy density at different power densities.

750 W kg^{-1}	1500 W kg ⁻¹	3000W kg^{-1}	7500 W kg ⁻¹	15000 W kg ⁻¹	22500 W kg ⁻¹
55.5 Wh kg ⁻¹	48.6 Wh kg^{-1}	44.9 Wh kg ⁻¹	41 Wh kg ⁻¹	33.6 Wh kg^{-1}	25 Wh kg^{-1}

104

105 Table S7. Comparison of energy density and power density of NHF-0.03 //AC ASC

106 with other supercapacitors.

Supercapacitor	Energy density	Power density	Ref.
C. CHOM: NI(OII) / CC//AC	$45.8 \text{ Wh } \text{kg}^{-1}$	800.0 W kg^{-1}	8
$Co-CH(\underline{a})$ Mn-NI $(OH)_2/CC//AC$	$25.6 \text{ Wh } \text{kg}^{-1}$	$12800.0 \text{ W kg}^{-1}$	Ū
	$40 \text{ Wh } \text{kg}^{-1}$	346.9 W kg ⁻¹	9
$Co_3O_4(\underline{a}_1N1(OH)_2)/AC$	$14.4 \text{ Wh } \text{kg}^{-1}$	3455 W kg^{-1}	,
	42.2 Wh kg^{-1}	1047.7 W kg^{-1}	10
$Co_{0.5}Ni_{0.5}WO_4//AC$	$23.7 \text{ Wh } \text{kg}^{-1}$	9371.4 W kg ⁻¹	10
	$41.66 \text{ Wh } \text{kg}^{-1}$	$1200 {\rm ~W~kg^{-1}}$	11
rP@rGO//N1 ₂ P	$15.55 \text{ Wh } \text{kg}^{-1}$	8000 W kg^{-1}	11
	$32.2 \text{ Wh } \text{kg}^{-1}$	3500 W kg^{-1}	12
Co _{0.1} N1 _{0.9} P/CNF/ CC//AC/CC	$27 \text{ Wh } \text{kg}^{-1}$	14000 W kg^{-1}	12
	$40.9 \text{ Wh } kg^{-1}$	$400 \mathrm{~W~kg^{-1}}$	13
MnO ₂ @Co-Ni LDH//AC	$21.3 \text{ Wh } \text{kg}^{-1}$	$4800 \mathrm{~W~kg^{-1}}$	15
	55.5 Wh kg ⁻¹	750 W kg ⁻¹	
NHF-0.03//AC	25 Wh kg ⁻¹	22500 W kg ⁻¹	This Work

\leq	750 W kg^{-1}	1500 W kg^{-1}	3000 kg^{-1}	7500 W kg^{-1}	15000 W kg^{-1}	22500 W kg ⁻¹
	102.3 Wh kg^{-1}	101.1 Wh kg ⁻¹	72.8 Wh kg ⁻¹	54.2 Wh kg ⁻¹	31.3 Wh kg^{-1}	25.0 Wh kg^{-1}

107 **Table S8.** NHF–0.03//Bi₂O₃ energy density at different power densities.

109 Table S9. NHF-0.03//Bi₂O₃ energy density at different power densities.(Nickel foam

110 is used as current collector).

\geq		750 W kg ⁻¹	1500 W kg ⁻¹	3000 kg^{-1}	7500 W kg ⁻¹	15000 W kg^{-1}	22500 W kg ⁻¹		
	-	112.6 Wh kg ⁻¹	110.0 Wh kg^{-1}	89.0 Wh kg ⁻¹	66.6 Wh kg ⁻¹	47.7 Wh kg^{-1}	28.1Wh kg^{-1}		
111									
112									
113	Refe	erences							
114	1.	SK. Geng,	Y. Zheng, SQ. L	i, H. Su, X. Zhao	o, J. Hu, HB. Shu	, M. Jaroniec, P. Che	en, QH.		
115		Liu and SZ	. Qiao, Nickel fer	rrocyanide as a h	igh-performance u	rea oxidation electro	ocatalyst,		
116		Nature Energ	gy, 2021, 6 , 904-9	012.					
117	2.	J. Huang, Y	. Li, Y. Zhang, G	G. Rao, C. Wu,	Y. Hu, X. Wang,	R. Lu, Y. Li and J	. Xiong,		
118		Identification	Identification of Key Reversible Intermediates in Self-Reconstructed Nickel-Based Hybrid						
119		Electrocataly	sts for Oxygen E	Evolution, Angew	vandte Chemie Inte	ernational Edition, 2	2019, 58 ,		
120		17458-17464	ŀ.						
121	3.	W. Lai, L. Ge	e, H. Li, Y. Deng,	B. Xu, B. Ouyan	g and E. Kan, In si	tu Raman spectrosco	pic study		
122		towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure, International							
123		Journal of Hydrogen Energy, 2021, 46 , 26861-26872.							
124	4.	S. Li, Y. Zha	S. Li, Y. Zhang, N. Liu, C. Yu, SJ. Lee, S. Zhou, R. Fu, J. Yang, W. Guo, H. Huang, JS. Lee,						
125		C. Wang, T. R. Kim, D. Nordlund, P. Pianetta, X. Du, J. Zhao, Y. Liu and J. Qiu, Operando							
126		Revealing D	ynamic Reconstr	ruction of NiCo	Carbonate Hydro	oxide for High-Rate	e Energy		
127		Storage, Jour	le, 2020, 4 , 673-6	87.					

- 128 5. P. Tang, P. Gao, X. Cui, Z. Chen, Q. Fu, Z. Wang, Y. Mo, H. Liu, C. Xu, J. Liu, J. Yan and S.
- 129 Passerini, Covalency Competition Induced Active Octahedral Sites in Spinel Cobaltites for

130 Enhanced Pseudocapacitive Charge Storage, *Advanced Energy Materials*, 2022, **12**, 2102053.

- 131 6. P. Gao, P. Tang, Y. Mo, P. Xiao, W. Zhou, S. Chen, H. Dong, Z. Li, C. Xu and J. Liu, Covalency
- competition induced selective bond breakage and surface reconstruction in manganese cobaltite
 towards enhanced electrochemical charge storage, *Green Energy & Environment*, 2024, 9, 909918.
- P. Tang, W. Tan, G. Deng, Y. Zhang, S. Xu, Q. Wang, G. Li, J. Zhu, Q. Dou and X. Yan,
 Understanding Pseudocapacitance Mechanisms by Synchrotron X-ray Analytical Techniques, *ENERGY & ENVIRONMENTAL MATERIALS*, 2023, 6, e12619.
- G. Wang, Y. Ding, Z. Xu, G. Wang, Z. Li and Z. Yan, Co₃O₄@Mn-Ni(OH)₂ core–shell
 heterostructure for hybrid supercapacitor electrode with high utilization, *Chemical Engineering Journal*, 2023, 469, 143984.
- 141 9. X. Bai, Q. Liu, J. Liu, H. Zhang, Z. Li, X. Jing, P. Liu, J. Wang and R. Li, Hierarchical
 142 Co₃O₄@Ni(OH)₂ core-shell nanosheet arrays for isolated all-solid state supercapacitor
 143 electrodes with superior electrochemical performance, *Chemical Engineering Journal*, 2017,
 144 **315**, 35-45.
- 145 10. B. Huang, H. Wang, S. Liang, H. Qin, Y. Li, Z. Luo, C. Zhao, L. Xie and L. Chen, Two146 dimensional porous cobalt–nickel tungstate thin sheets for high performance supercapattery,
 147 *Energy Storage Materials*, 2020, **32**, 105-114.
- 148 11. N. Parveen, M. Hilal and J. I. Han, Newly Design Porous/Sponge Red Phosphorus@Graphene
 and Highly Conductive Ni₂P Electrode for Asymmetric Solid State Supercapacitive Device
 With Excellent Performance, *Nano-Micro Letters*, 2020, **12**, 25.
- 151 12. N. Zhang, Y. Li, J. Xu, J. Li, B. Wei, Y. Ding, I. Amorim, R. Thomas, S. M. Thalluri, Y. Liu, G.
- Yu and L. Liu, High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on
 Bimetallic Transition Metal Phosphide Nanocrystals, *ACS Nano*, 2019, **13**, 10612-10621.
- 154 13. H. Luo, B. Wang, T. Liu, F. Jin, R. Liu, C. Xu, C. Wang, K. Ji, Y. Zhou, D. Wang and S. Dou,
- 155 Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO₂ nanowire with enhanced
- 156 pseudocapacitive properties, *Energy Storage Materials*, 2019, **19**, 370-378.