FeNi alloys embedded in porous carbon shells on dual-substrate as efficient electrocatalyst for zinc-air batteries

Han Guo ^a, Guangxu Yao ^a, Chuanzhen Feng ^a, Mi Wang ^a, Huijuan Zhang ^{*a,b} and Yu Wang ^{*a,b}

- ^{*a*} School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China. E-mail: zhanghj@cqu.edu.cn; wangy@cqu.edu.cn
- ^b College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, P. R. China

Fig. S1. SEM images of ZIF-8 at different magnifications.

Fig. S2. SEM images of NC at different magnifications.

Fig. S3. SEM images of FeNi/NC at different magnifications.

Fig. S4. SEM images of (a) FeNi@Ti₄O₇-CNFs, (b) Ni/NC@Ti₄O₇-CNFs, (c) Fe/NC@Ti₄O₇-CNFs, (d) NC@Ti₄O₇-CNFs, (e) FeNi/NC-CNFs, (f) Ti₄O₇-CNFs and (g) FeNi/NC.

Fig. S5. (a) TEM images of FeNi/NC@Ti₄O₇-CNFs. (a) Inset, dot-matrix striped image of labeled area. (b) HAADF-STEM image, and the corresponding FeNi/NC@Ti₄O₇-CNFs EDS mapped image.

Fig. S6. (a) TEM images of FeNi@Ti₄O₇-CNFs. (a) Inset, dot-matrix striped image of labeled area.
(b) HAADF-STEM image, and the corresponding FeNi@Ti₄O₇-CNFs EDS mapped image.

Fig. S7. XRD patterns of (a) FeNi@Ti₄O₇-CNFs, (b) Ni/NC@Ti₄O₇-CNFs, (c) Fe/NC@Ti₄O₇-CNFs, (d) NC@Ti₄O₇-CNFs, (e) FeNi/NC-CNFs, (f) Ti₄O₇-CNFs and (g) FeNi/NC.

Fig. S8. Raman spectra of Ni/NC@Ti₄O₇-CNFs, Fe/NC@Ti₄O₇-CNFs and FeNi/NC-CNFs.

Fig. S9. The conductivity of FeNi/NC-CNFs, FeNi/NC@Ti₄O₇-CNFs, Fe/NC@Ti₄O₇-CNFs and NC@Ti₄O₇-CNFs. Error bars indicate at least three independent measurements of the same catalyst.

Fig. S10. (a) XPS full measurement spectra of FeNi/NC@Ti₄O₇-CNFs. (b) N content of FeNi/NC@Ti₄O₇-CNFs, FeNi@Ti₄O₇-CNFs and NC@Ti₄O₇-CNFs.

Fig. S11. Comparison of half-wave potentials $(E_{1/2})$ for different catalysts. Error bars indicate at least three independent measurements for the same catalyst.

Fig. S12. (a) LSV curve of FeNi/NC-CNFs and FeNi/NC in 0.1 M O_2 -saturated KOH solution (1600 rpm). (b) Tafel slope plot. (c) Half-wave potential ($E_{1/2}$). Error bars indicate at least three independent measurements for the same catalyst.

Fig. S13. LSV curves of Pt/C, FeNi@Ti₄O₇-CNFs, Ni/NC@Ti₄O₇-CNFs, Fe/NC@Ti₄O₇-CNFs, NC@Ti₄O₇-CNFs, FeNi/NC-CNFs, Ti₄O₇-CNFs and FeNi/NC in O₂-saturated 0.1 M KOH solution and corresponding Koutecky -Lecich (K-L) plots.

Fig. S14. Endurance test at 1 V (vs. RHE) for FeNi/NC-CNFs and FeNi/NC.

Fig. S15. (a) LSV curves of FeNi/NC-CNFs and FeNi/NC in 1 M KOH solution. (b) Tafel slope plot.

Fig. S16. LSV curves before and after 3000 cycles of (a) RuO₂, (b) FeNi/NC-CNFs and (c) FeNi/NC.

Fig. S17. Capacitance CV curves of FeNi/NC@Ti₄O₇-CNFs, FeNi@Ti₄O₇-CNFs, Ni/NC@Ti₄O₇-CNFs, Fe/NC@Ti₄O₇-CNFs, NC@Ti₄O₇-CNFs, FeNi/NC-CNFs, Ti₄O₇-CNFs and FeNi/NC in the non-Faraday region at different scanning rates.

Fig. S18. (a) EIS Nyquist plot of FeNi/NC-CNFs and FeNi/NC; (a) Inset, fitted equivalent

circuit diagram. (b) Capacitance current versus scan rate at 1.05 V to assess the C_{dl} of the catalysts.

Fig. S19. Charge-discharge polarization curves of liquid ZABs assembled by FeNi/NC@Ti₄O₇-CNFs and Pt/C+RuO₂ hybrid catalysts as air cathodes, respectively.

Fig. S20. Photograph of the open-circuit voltage of a flexible solid-state ZAB assembled with FeNi/NC@ Ti_4O_7 -CNFs as air cathodes under bending conditions.

Fig. S21. Photograph of a flexible solid-state ZAB assembled with FeNi/NC@Ti₄O₇-CNFs as air cathodes used in tandem to power a fan.

 Table S1. Metal contents of catalysts measured by ICP (at%).

Samples	Fe	Ni
FeNi/NC@Ti ₄ O ₇ -CNFs	1.37	1.34
FeNi@Ti ₄ O ₇ -CNFs	1.56	1.53
Ni/NC@Ti ₄ O ₇ -CNFs		2.63
Fe/NC@Ti ₄ O ₇ -CNFs	2.68	

Table S2. Comparison of ORR and OER activities of FeNi/NC@Ti₄O₇-CNFs with other previously reported bifunctional electrocatalysts.

Catalyst	E _{1/2} (V vs. RHE)	E _{j=10} (V vs. RHE)	ΔE (V)	Ref.
FeNi/NC@Ti ₄ O ₇ -CNFs	0.87	1.526	0.656	This work
	(0.1 M KOH)	(1 M KOH)	0.030	
NiFe/Fe,N-CB	0.8	1.511	0.71	1
	(0.1 M KOH)	(1 M KOH)	0.71	-
Fe-NiNC-50	0.84	1.57	0.72	2
	(0.1 M KOH)	(1 M KOH)	0.75	_

NiFe@C@Co CNFs	0.87	1.6	0.72	3
	(0.1 M KOH)	(1 M KOH)	0.73	5
Fe _{0.5} Ni _{0.5} @N-GR	0.69	1.44	0.75	4
	(0.1 M KOH)	(1 M KOH)	0.75	
FeNi ₃ @NC	0.783	1.522	0.720	5
	(0.1 M KOH)	(1 M KOH)	0.739	5
NiFe/Co-N@CNTs	0.87	1.53	0.66	6
	(0.1 M KOH)	(1 M KOH)	0.00	0
FeNi ₃ C _x -Pd-7%	0.80	$1.518(E_{j=50})$		7
	(0.1 M KOH)	(1 M KOH)		
FeNi/NC	0.807	1.576	0.760	8
	(0.1 M KOH)	(1 M KOH)	0.709	
ENGN CNT/NCS	0.84	1.59	0.75	9
FeNi@N-CNT/NCS	(0.1 M KOH)	(1 M KOH)	0.75	,
FeNiCo@NC-P	0.84	1.54	0.70	10
	(0.1 M KOH)	(0.1 M KOH)	0.70	
NiFe/N-CNT	0.75	1.52	0.77	11
	(0.1 M KOH)	(0.1 M KOH)	0.77	11
Fe-Co-Ni MOF	0.75	1.48	0.72	12
	(0.1 M KOH)	(1 M KOH)	0.73	

Table S3. Comparison of the performance of liquid ZABs assembled with FeNi/NC@Ti₄O₇-CNFswith other previously reported bifunctional electrocatalysts.

Catalyst	OCV (V)	Power density (mW cm ⁻²)	Specific capacity (mAh·g _{Zn} ⁻¹)	Cycling stability	Ref.
FeNi/NC@Ti ₄ O ₇ -CNFs	1.52	169.5	802.6 (5 mA cm ⁻²)	320 hours / 960cycles (5 mA cm ⁻²)	This work
NiFe/Fe,N-CB	1.565	66	731.0 (5 mA cm ⁻²)	280 cycles (5 mA cm ⁻²)	1
Fe–NiNC-50	1.41	220	752.14 (5 mA cm ⁻²)	100 hours (2 mA cm ⁻²)	2
NiFe@C@Co CNFs	1.44	130	694.0 (5 mA cm ⁻²)	200 hours (5 mA cm ⁻²)	3

Fe _{0.5} Ni _{0.5} @N-GR	1.482	85	940 (5 mA cm ⁻²)	40 hours (20 mA cm ⁻²)	4
FeNi ₃ @NC	1.48	149.7	658 (10 mA cm ⁻²)	280 hours (5 mA cm ⁻²)	5
FeNiCo@NC-P	1.36	112.0	807 (10 mA cm ⁻²)	130 hours / 130 cycles (10 mA cm ⁻²)	13
NiFe@N-CFs	1.40	102	719 (5 mA cm ⁻²)	100 hours / 300 cycles (10 mA cm ⁻²)	14
Ni ₃ Fe/Co-N-C	1.39	68		65 hours (10 mA cm ⁻²)	15
FeNi@NC	1.49	98	649 (10 mA cm ⁻²)	240 hours (10 mA cm ⁻²)	16
FeNi–N–C@FeNi LDH	1.497	73.9	749.3 (10 mA cm ⁻²)	100 hours / 300 cycles (10 mA cm ⁻²)	17
FeNi@NC-900	1.4	119	830.1 (10 mA cm ⁻²)	70 hours (10 mA cm ⁻²)	18
FeNi ₃ @NWC	1.47	143	805 (5 mA cm ⁻²)	800 cycles (5 mA cm ⁻²)	19
FeNi-NCS-2	1.43	109.8	639.71 (20 mA·cm⁻²)	130 cycles (10 mA cm ⁻²)	20

Supplementary References

- Y. Y. Wang, Y. P. Gao, L. X. Ma, Y. Z. Xue, Z. H. Liu, H. L. Cui, N. Zhang and R. B. Jiang, Atomically Dispersed Fe-N₄ Sites and NiFe-LDH Sub-Nanoclusters as an Excellent Air Cathode for Rechargeable Zinc-Air Batteries, ACS Appl. Mater. Interfaces, 2023, 15, 16732-16743.
- X. F. Zhu, D. T. Zhang, C. J. Chen, Q. R. Zhang, R. S. Liu, Z. H. Xia, L. M. Dai, R. Amal and X. Y. Lu, Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis, *Nano Energy*, 2020, 71, 104597.
- 3. X. Chen, J. Pu, X. H. Hu, Y. C. Yao, Y. B. Dou, J. J. Jiang and W. J. Zhang, Janus Hollow Nanofiber with Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Battery, *Small*, 2022, **18**, 2200578.
- P. T. Liu, D. Q. Gao, W. Xiao, L. Ma, K. Sun, P. X. Xi, D. S. Xue and J. Wang, Self-Powered Water-Splitting Devices by Core-Shell NiFe@N-Graphite-Based Zn-Air Batteries, Adv. Funct. Mater., 2018, 28, 1706928.
- X. Xie, H. Peng, K. J. Sun, X. F. Lei, R. Q. Zhu, Z. Zhang, G. F. Ma and Z. Q. Lei, Rational construction of FeNi₃/N doped carbon nanotubes for high-performance and reversible oxygen catalysis reaction for rechargeable Zn-air battery, *Chem. Eng. J.*, 2023, 452, 139253.
- 6. B. Liu, B. W. Yuan, C. Wang, S. J. You, J. Liu, X. Meng, X. Q. Xu, Z. Cai, J. H. Xie and J. L. Zou, Highly-dispersed NiFe alloys in-situ anchored on outer surface of Co, N co doped carbon nanotubes with enhanced stability for oxygen electrocatalysis, *J. Colloid Interface Sci.*, 2023, **635**, 208-220.
- T. Z. Li, Y. H. Chen, Z. H. Tang, Z. Liu and C. H. Wang, Palladium nanoparticles supported by metal-organic frameworks derived FeNi₃C_x nanorods as efficient oxygen reversible catalysts for rechargeable Zn-Air batteries, *Electrochim. Acta*, 2019, **307**, 403-413.
- G. L. Li, X. C. Xu, B. B. Yang, S. Cao, X. Y. Wang, X. D. Fu, Y. T. Shi, Y. Yan, X. D. Song and C. Hao, Micelle-template synthesis of a 3D porous FeNi alloy and nitrogen-codoped carbon material as a bifunctional oxygen electrocatalyst, *Electrochim. Acta*, 2020, 331, 135375.
- J. T. Ren, L. Chen, Y. S. Wang, W. W. Tian, L. J. Gao and Z. Y. Yuan, FeNi Nanoalloys Encapsulated in N-Doped CNTs Tangled with N-Doped Carbon Nanosheets as Efficient Multifunctional Catalysts for Overall Water Splitting and Rechargeable Zn-Air Batteries, ACS Sustain. Chem. Eng., 2020, 8, 223-237.
- D. Z. Ren, J. Ying, M. L. Xiao, Y. P. Deng, J. H. Ou, J. B. Zhu, G. H. Liu, Y. Pei, S. Li, A. M. Jauhar, H. L. Jin, S. Wang, D. Su, A. P. Yu and Z. W. Chen, Hierarchically Porous Multimetal-Based Carbon Nanorod Hybrid as an Efficient Oxygen Catalyst for Rechargeable Zinc-Air Batteries, *Adv. Funct. Mater.*, 2020, 30, 1908167.
- 11. H. Lei, Z. L. Wang, F. Yang, X. Q. Huang, J. H. Liu, Y. Y. Liang, J. P. Xie, M. S.

Javed, X. H. Lu, S. Z. Tan and W. J. Mai, NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries, *Nano Energy*, 2020, **68**, 104293.

- F. S. Farahani, M. S. Rahmanifar, A. Noori, M. F. El-Kady, N. Hassani, M. Neek-Amal, R. B. Kaner and M. F. Mousavi, Trilayer Metal-Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications, J. Am. Chem. Soc., 2022, 144, 3411-3428.
- D. Z. Ren, J. Ying, M. L. Xiao, Y. P. Deng, J. H. Ou, J. B. Zhu, G. H. Liu, Y. Pei, S. Li, A. M. Jauhar, H. L. Jin, S. Wang, D. Su, A. P. Yu and Z. W. Chen, Hierarchically Porous Multimetal-Based Carbon Nanorod Hybrid as an Efficient Oxygen Catalyst for Rechargeable Zinc-Air Batteries, *Adv. Funct. Mater.*, 2020, 30, 1908167.
- Y. L. Niu, X. Teng, S. Q. Gong and Z. F. Chen, A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries, J. Mater. Chem. A, 2020, 8, 13725-13734.
- J. B. Tan, T. Thomas, J. X. Liu, L. Yang, L. H. Pan, R. Cao, H. J. Shen, J. C. Wang, J. Liu and M. H. Yang, Rapid microwave-assisted preparation of high-performance bifunctional Ni₃Fe/Co-N-C for rechargeable Zn-air battery, *Chem. Eng. J.*, 2020, 395, 125151.
- S. Liu, K. Dong, X. Lei, K. Sun, X. Xie, H. Peng and G. Ma, FeNi alloy embedded in three-dimensional nitrogen-doped porous carbon as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries, *Journal of Energy Storage*, 2024, 89, 111862.
- 17. S. Zhang, L. Yang, T. Yang, Y. Song, M. Jia, J. Yang, Y. Liu, X. Zhou and J. Tang, Pomegranate-like structured FeNi-nanodots@FeNi LDH composite as a high performance bifunctional catalyst for oxygen electrocatalytic reactions in zinc-air batteries, *Composites Communications*, 2023, 44, 101757.
- S.-Q. Deng, Z. Zhuang, C.-A. Zhou, H. Zheng, S.-R. Zheng, W. Yan and J. Zhang, Metal-organic framework derived FeNi alloy nanoparticles embedded in N-doped porous carbon as high-performance bifunctional air-cathode catalysts for rechargeable zinc-air battery, J. Colloid Interface Sci., 2023, 641, 265-276.
- Y. Wang, Y. Y. Liu, L. M. Zhou, P. X. Zhang, X. L. Wu, T. Liu, S. Mehdi, X. J. Guo, J. C. Jiang and B. J. Li, Ni₃Fe/Ni₃Fe(OOH)_x dynamically coupled on wood-derived nitrogen doped carbon as a bifunctional electrocatalyst for rechargeable zinc-air batteries, *J. Mater. Chem. A*, 2023, **11**, 1894-1905.
- Z. H. Yao, D. S. Chen, Y. T. Li, Q. Q. Lyu, J. Wang and Q. Zhong, MOF-derived multi-metal embedded N-doped carbon sheets rich in CNTs as efficient bifunctional oxygen electrocatalysts for rechargeable ZABs, *Int. J. Hydrog. Energy*, 2022, 47, 984-992.