Supporting Information for

Qingshui Zheng^{§ a}, Fengxian Cao^{§ a}, Yuhong Wang^a, Anling Tong^a, Shibo Wang^a, Pengxu

Chen^a, Zeyuan Zhao^a, Yang Wang^a, Weihai Sun^{*}^a, Weichun Pan^{*}^a, Yunlong Li^{*}^b, and Jihuai

 $Wu^{*\,a}$

 ^a Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, China.
 ^b Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen, China.

This file includes:

Experimental Section

Figures S1~S12

Tables S1~S3

^{*} Corresponding authors: E-mail: sunweihai@hqu.edu.cn; weichun.pan@outlook.com; jhwu@hqu.edu.cn; yl.li2@siat.ac.cn.

[§] These authors contributed equally to this work.

Experimental section

Materials

All reagents were used as received without further purification. The SnO₂ aqueous colloidal precursor (tin (IV) oxide 15% in H₂O colloidal dispersion, Alfa Aesar). PbI₂ (99.999%, Advanced Election Technology Co. Ltd), FAI (99.999%, Advanced Election Technology Co., Ltd), MAI (\geq 99.5%, Xi'an Polymer Light Technology Corp.), Butylamine (99.5%, Xi'an Polymer Light Technology Corp), MAC1 (99.5%, Xi'an Polymer Light Technology Corp), 2, 2', 7, 7'-Tetrakis[N, N-di(4-methoxyphenyl)amino]-9, 9'-spirobifluorene (Spiro-OMeTAD, \geq 99%, Shenzhen Feiming Science and Technology Co., Ltd), Isopropanol (IPA, 99.5%, Sigma-Aldrich), dimethylformamide (DMF, \geq 99.9%, Sigma-Aldrich), dimethyl sulfoxide (DMSO, \geq 99.9%, Sigma-Aldrich), Bis (trifluoromethane) sulfonimide lithium salt (Li-TFSI, \geq 99%, Sigma-Aldrich), 4-tert-Butylpyridine(4-tBP, 98%, Sigma-Aldrich). ITO substrate (10 Ω , Advanced Election Technology Co. Ltd).

Synthesis of butylamine bis(trifluoromethyl)sulfonylimine (BATFSI) ionic liquids

Butylamine (0.268 g, 3.67 mmol) and HTFSI (1.03 g, 3.49 mmol) were mixed and stirred for 12 h to obtain the resulting ionic liquid (1.30 g). The ionic liquid was used after evaporation under reduced pressure using a rotary evaporator.

Perovskite Solar Cells Preparation

ITO substrates were sequentially washed with deionized water, ethyl alcohol, and then again with ethyl alcohol in an ultrasonic bath for 30 min, and which was further treated with UV/ozone (UVO) for 20 min before use. The SnO₂ film was spin-coated onto the ITO using a commercial SnO₂ colloidal solution (3% diluted with water) at 3500 rpm for 25 s, and then annealed at 150°C for 30 min in ambient air. A 30 μ L PbI₂ solution (1.5 M mol/L PbI₂ in DMF:DMSO = 9:1) was spin-coated onto SnO₂ at 1500 rpm

for 30 s, and then annealed at 70°C for 1 min. Subsequently, a 30 μ L organic salt solution (0.468 M mol/L FAI: 0.41 M mol/L MAI: 0.133 M mol/L MACl in IPA) was spin-coated at 2000 rpm for 30 s and then annealed with a two-step program: at 30°C for 5 min and at 150°C for 15 min, respectively. The hole transfer materials were deposited by preparing a Spiro-OMeTAD chlorobenzene solution (750 mg/mL) and mixing it with 28.8 μ L 4-tBP, 17.5 μ L Li-TFSI (520 mg/mL in acetonitrile). The BATFSI solution (10 mg/mL in IPA) was added to the hole transfer materials at volume ratios of 1%, 2%, and 3%, respectively. The Spiro-OMeTAD film was spin-coated onto the perovskite film at 1,000 rpm for 10 s and then at 3,500 rpm for 20 s. Finally, 100 nm thick silver layers were deposited using a thermal evaporator.

Characterization

The Scan electron microscope pictures were taken with FE-SEM (JSM-7610F Plus, Japan). The surface roughness and contact potential difference of the HTL were measured using high-resolution atomic force microscopy (AFM) on a Bruker Multimode-8 system from the USA. An intelligent mode with a scan rate of 0.977 Hz was applied. X-ray photoelectron spectra (XPS) and ultraviolet photoelectron spectroscopy (UPS) were measured by X-ray photoelectron spectrometer (Thermo Fisher Scientific K-Alpha⁺, U.K.). UV–vis absorption spectra were measured by UV–vis spectrometer (PerkinElmer Lambda 950, USA). The ESR measurements were carried out with an X-band spectrometer (JEOL RESONANCE JES-FA200, Japan). The conductivity of the HTL was measured by the four-point probe (Tektronix 4200A-SCS, China). X-ray diffraction (XRD) spectra were tested by X-ray powder diffractometer (Smart Lab, Japan). The Time-resolved fluorescence spectroscopy (TRPL) spectra and steady-state PL were measured by Multifunctional fluorescence spectrum measurement system (OmniFluo-510HQ, China) using an excitation wavelength of 350 nm. The photoeurent density-

voltage (J–V) curves were measured with a light intensity of 100 mW·cm⁻² (AM 1.5G) which was calibrated by a silicon reference cell certificated by NREL. The Electrochemical Workstation (China) recorded impedance spectroscopy with a bias voltage of 0 V and the Z-View program calculated and analyzed the data. The EQE spectra were obtained using a quantum efficiency measurement system (RR0121013, QE-R, Eclitech, China). Long-term stability tests were measured with an RH of 35% and a temperature of 25 °C.

Figure S1~S12

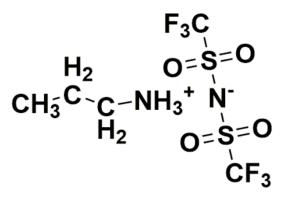
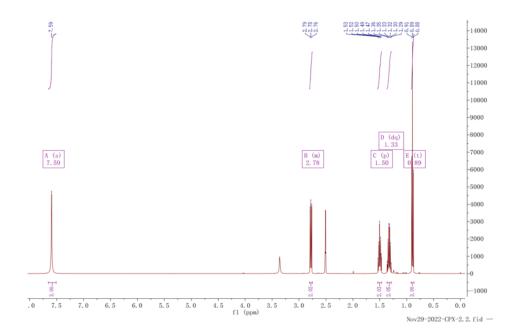



Figure S1. Chemical structure of butylamine bis(trifluoromethyl)sulfonylimine (BATFSI)

Figure S2. ¹H NMR (500 MHz, DMSO- d_6) δ 7.59 (s, 3H), 2.81 – 2.75 (m, 2H), 1.50 (p, J = 7.5 Hz, 2H),

1.33 (dq, *J* = 14.6, 7.3 Hz, 2H), 0.89 (t, *J* = 7.4 Hz, 3H) of BATFSI.

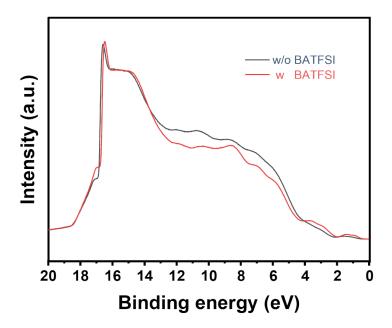


Figure. S3 The UPS broad spectra of PVK films.

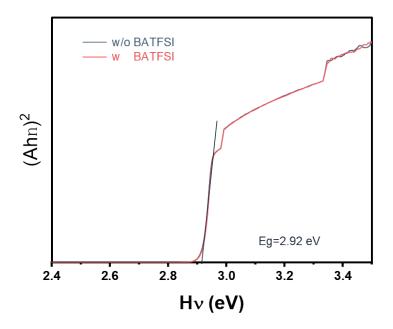


Figure S4. Tauc plots were used to estimate the optical bandgap (E_g) of the spiro-OMeTAD with and without

BATFSI from absorption spectra.

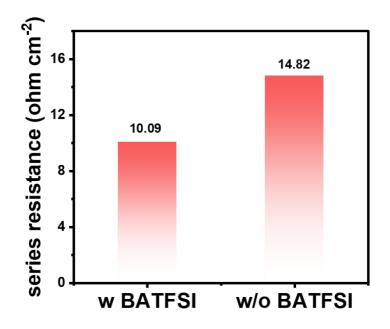


Figure S5. Four-point probe conductivity measurements with structures of ITO/HTL (with LiTFSI doped

or BATFSI and LiTFSI co-doped)/Ag.

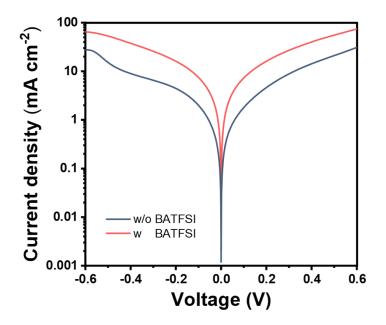


Figure S6. Tafel plots with structures of ITO/HTL (with LiTFSI doped or BATFSI and LiTFSI codoped)/Ag.

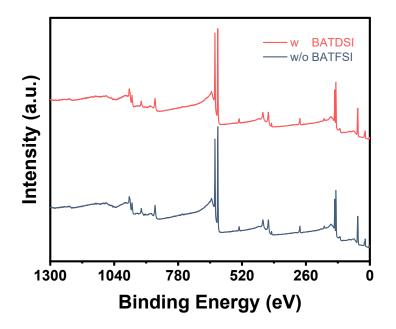


Figure S7. The XPS broad spectra of the PVK/HTL samples were rinsed with chlorobenzene.

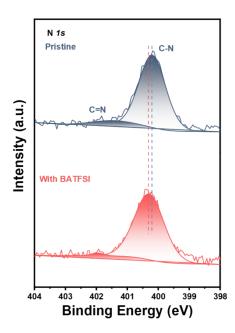


Figure S8. XPS measurements of the feature peak of N 1s for perovskites after removing the HTLs with and

without BATFSI.

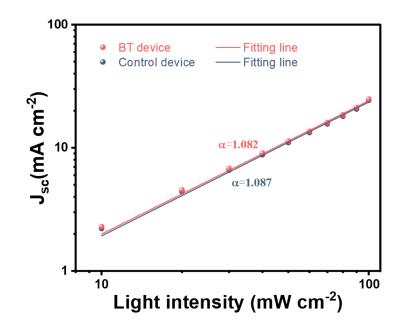


Figure S9. Light-dependent J_{SC} measurements of the device with and without BATFSI.

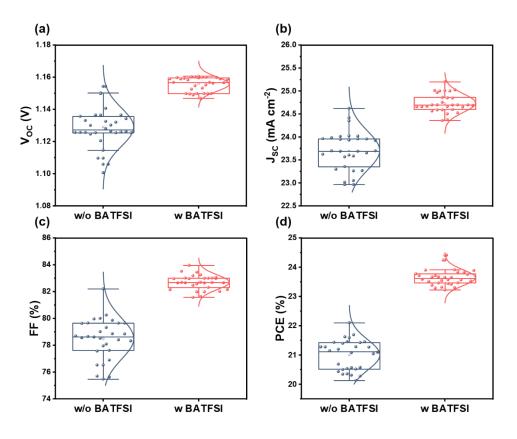


Figure S10. The statistics of (a) V_{OC} , (b) J_{SC} , (c) FF and (d) PCE distribution for devices without and with BATFSI.

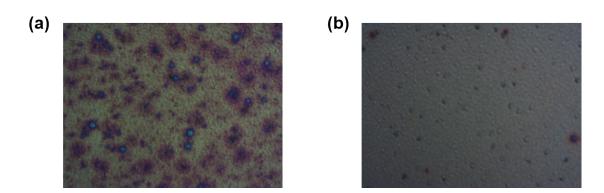


Figure S11. Optical micrographs of the PVK/HTL films of (a) LiTFSI doped and (b) BATFSI and LiTFSI co-doped.

(b) (a) w/o BATDSI w BATFSI Intensity (a.u.) Intensity (a.u.) 1040 780 520 780 520 260 1040 260 1300 Ō 1300 Binding Energy (eV) Binding Energy (eV)

Figure S12. The XPS broad spectra of the PVK/HTL samples were rinsed with chlorobenzene, after one month.

Ò

Tables S1~S3

 Table S1. Comparison of some optoelectronic parameters between spiro-OMeTAD with and without

 BATFSI.

spiro-OMeTAD	E _{cutoff} (eV)	E _{onset} (eV)	E _F (eV)	E _{VB} (eV)	E _{CB} (eV)	E _g (eV)
w/o BATFSI	16.93	0.55	-4.29	-4.84	-1.92	2.92
w BATFSI	16.77	0.45	-4.45	-4.90	-1.98	2.92

Table S2. Photovoltaic data of PSCs based on HTLs doped with different concentrations of BATFSI.

Sample	$V_{OC}(\mathbf{V})$	J_{SC} (mA cm ⁻²)	FF (%)	PCE (%)
0%	1.101	24.42	82.22	22.11
1.0%	1.150	25.00	83.19	23.92
2.0%	1.161	25.26	83.45	24.47
3.0%	1.160	25.02	83.52	24.24

 Table S3. Photovoltaic performance of the solar cells using different HTLs.

Sample		V_{OC} (V)	J_{SC} (mA cm ⁻²)	FF (%)	PCE (%)
w/o BATFSI	Statistics	1.129±0.005	23.68±0.23	78.49±0.28	20.98±0.28
	Champion	1.101	24.42	82.22	22.11
w/ BATFSI	Statistics	1.156±0.005	24.74±0.18	82.70±0.83	23.64±0.30
	Champion	1.161	25.26	83.45	24.47