Supporting Information

Tailoring Electronic Environments of Dispersed Ru Sites for Efficient Alkaline Hydrogen Evolution

Mengyu Zhang^a, Bowen Zhou^a, Lingfei Guo^a, Hongdong Li^a, Weiping Xiao^b, Guangrui Xu^c, Dehong Chen^c, Caixia Li^d, Yunmei Du^d, Zexing Wu^a, *, Lei Wang^a, *

[a] Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road, 266042, Qingdao, P. R. China E-mail: splswzx@qust.edu.cn; inorchemwl@126.com

[b] College of Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, China

[c] College of Materials Science and Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road, 266042, Qingdao, P. R. China

[d] College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China

Experimental section

Chemical reagents and materials

Anhydrous ethanol (\geq 99.7 wt.%) was purchased from Sinopharm Chemical Reagent co. Ltd. (Shanghai, China). Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, \geq 99.0 wt.%), Ruthenium carbon (Ru/C, 5%) and potassium hydroxide (KOH) were supplied by Macklin Biochemical Co., Ltd. (Shanghai, China). Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O, \geq 98.5 wt.%), hydrochloric acid, and acetone were obtained from Xilong Science Co., Ltd. (Guangzhou, China). Urea (N₂H₄CO, \geq 99.5 wt.%) and anhydrous ruthenium (III) chloride (RuCl₃, 45-55 wt.%) were purchased from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China). Ammonium fluoride (NH₄F, \geq 96.0 wt.%) was supplied by Sinopharm Chemical Reagent co. Ltd. (Shanghai, China). Deionized water used in the experiment was always ultrapure water (18.2 M Ω ·cm). Platinum, nominally 20% on carbon black (Pt/C 20%) was purchased from Thermo Scientific Co., Ltd. (Shanghai, China).

Synthesis of NiCo-OH/CC

The carbon cloth $(3 \times 4 \text{ cm}^2)$ was ultrasonically cleaned sequentially in acetone, 3 M hydrochloric acid, deionized water, and ethanol. Co(NO₃)₂·6H₂O (348.0 mg) and Ni(NO₃)₂·6H₂O (162.5 mg) were dissolved in 35 mL of deionized water and stirred for 30 minutes. Subsequently, 180 mg of CO(NH₂)₂ and 44.4 mg of NH₄F were added to the solution. The mixture was transferred to a 50 mL Teflon-lined autoclave, and a piece of pretreated carbon cloth was immersed in it. The autoclave was sealed and heated at 120 °C for 5 hours. After cooling to room temperature, the sample was washed several times with deionized water and dried in an oven at 60 °C.

Synthesis of NiCo₂O₄/CC

The as-prepared NiCo-OH/CC was placed in the center of a tube furnace and heated at $400 \text{ }^{\circ}\text{C}$ for 3 hours in air to obtain NiCo₂O₄.

Synthesis of Ru-NiCoO₂/CC

The Ru-NiCoO₂ catalyst was fabricated using a facile galvanostatic deposition strategy

in the electrochemical workstation (CHI760E, Inc. China). Typically, the as-prepared NiCo₂O₄/CC served as the working electrode, and a high-purity graphite rod was used as the counter electrode. Ru deposition was carried out in an electrolyte containing RuCl₃ (3×10^{-3} M) and NH₂SO₃H (30×10^{-3} M) under a current density of -0.2 mA cm⁻² for 1200 seconds.

Synthesis of Ru-NiCo₂O₄/CC

 $Co(NO_3)_2 \cdot 6H_2O$ (348.0 mg) and Ni(NO₃)₂ · $6H_2O$ (162.5 mg), were dissolved in 35 ml of deionized water and stirred for 30 min, followed by the addition of CO (NH₂)₂ (180 mg), NH₄F (44.4 mg), RuCl₃·xH₂O (24.7 mg) and NH₂SO₃H (105 mg), and stirred for another 10 min. The solution was then transferred to a Teflon-lined autoclave (50 ml), and a piece of pretreated CC (3 × 4 cm⁻²) was immersed in the solution and placed vertically. The autoclave was sealed and kept at 120 °C for 5 h, after which it was allowed to cool naturally. Washing the obtained CC several times with deionized water and anhydrous ethanol and dried at 60 °C. At last, placed it in the center of the tube furnace and annealed at 400 °C in air for 3 h at a ramp rate of 5 °C min⁻¹ to obtain Ru-NiCo₂O₄/CC.

Synthesis of Ru/CC

Using a facile galvanostatic deposition strategy in the electrochemical workstation (CHI760E, Inc. China). Typically, the CC served as the working electrode, and a high-purity graphite rod was used as the counter electrode. Ru deposition was carried out in an electrolyte containing RuCl₃ (3×10^{-3} M) and NH₂SO₃H (30×10^{-3} M) under a current density of -0.2 mA cm⁻² for 1200 seconds.

Electrochemical Measurements

HER electrochemical tests were conducted in an alkaline medium (1 M KOH / 1 M KOH + seawater) using a CHI 760E electrochemical workstation in a three-electrode system. A reversible hydrogen electrode (RHE) served as the reference electrode, and a graphite rod was used as the counter electrode. Linear sweep voltammetry (LSV) was performed with 95% iR compensation at a scan rate of 5 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) measurements were taken over a frequency range of 0.1

to 100 kHz with an AC amplitude of 5 mV. All stability tests were carried out without iR compensation. Using a RuO_2 || Ru-NiCoO₂/CC electrolytic cell, the generated gas was collected by the drainage method, and the Faradaic efficiency was estimated.

Physical characterization

The morphologies were observed using a scanning electron microscope (SEM) Hitachi S-4800. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) measurements were performed using an FEI Tecnai G20 with a 200 kV acceleration voltage. Energy-dispersive X-ray spectroscopy (EDS) mapping was also conducted with the FEI Tecnai G20 (200 kV). The purity and crystal properties of the catalysts were evaluated by Rigaku D/max-2500 pc X-ray diffraction (XRD) using Cu Ka radiation ($\lambda = 1.54$ Å) at a scan rate of 2° s⁻¹. The chemical states of the samples were analyzed using Thermo Fisher Scientific II X-ray photoelectron spectroscopy (XPS) with an Al Ka source. Contact angle measurements were performed using a Dataphysics-OCA100. Raman spectra were obtained with a LabRAM HR Evolution using an excitation wavelength of 532 nm.

Fig. S1 The XRD patterns of (a) NiCo-OH/CC, (b) NiCo₂O₄/CC, (c) Ru-NiCo₂O₄/CC and (d) Ru/CC.

Fig. S2 SEM images of (a, b) NiCo-OH/CC, (c, d) NiCo₂O₄/CC.

Fig. S3 Elemental maps obtained by point-scanning the energy spectrum for a position of Ru-NiCoO $_2$ /CC.

Fig S4. XPS spectrum of (a) Ni 2p, (b) Co 2p and (c) O 1s of NiCo₂O₄/CC.

Fig S5. XPS spectrum of C 1s of Ru-NiCoO₂/CC.

Fig S6. Poisoning experiment of Ru-NiCoO₂/CC, Ru-NiCo₂O₄/CC and Ru/CC in 1 M KOH with the addition of 0.5 mM of potassium thiocyanate.

Fig S7. SEM image of Ru -NiCoO₂/CC after i-t test in 1 M KOH.

Fig S8. LSV curves before and after 5000CV cycle in 1 M KOH.

Fig S9. SEM images of Ru-NiCoO₂/CC after i-t test in 1 M KOH + seawater.

Fig S10. Schematic of overall water splitting powered with the electric energy generated by (a) a single AAA battery,

(b) solar energy, (c) wind and (d) thermal.

Fig. S11. The device of collecting gas by the drainage method.

Element	Line Type	Absorption Correction	wt%	<i>wt%</i> Sigma
С	K series	1.00	80.37	88.64
0	K series	1.00	11.52	9.54
Co	K series	1.00	5.80	1.30
Ni	K series	1.00	2.24	0.50
Ru	L series	1.00	0.07	0.01
Total:			100.00	100.00

Table S1. Relative elemental content of Ru-NiCoO₂/CC.

Table S2. Comparison of the HER performance of the Ru-NiCoO₂/CC with other previously reported electrocatalysts with overpotential versus Tafel slope in 1.0 M

KOH.							
Catalyst	η_{10} / mV	Tafel slopes (mV dec ⁻¹)	Ref.				
Ru-NiCoO ₂ /CC	37	63.7	This work				
RuNiCo₀.5-600℃	42	62	[1]				
NiCoP/CC	62	68	[2]				
Ru/CoO	55	70	[3]				
RuNi-0	69	7	[4]				
Ni-Co-P-00	150	60	[5]				
Co-RGO	156	70	[6]				
СоР	226	76	[7]				
Ni _{0.} Co _{0.67} S ₂	88	91	[8]				
Ru-CoP CC	45	98	[9]				
RuNi-alloy@SC	9	96	[10]				

Catalyst	η_{10} / mV	Ref.
Ru-NiCoO ₂ /CC	50	This Work
Ru/B-Ni ₂ P/Ni ₅ P ₄	57	[11]
Ru _{1+NPS} /N-C	58	[12]
Co@RuCo-	59	[13]
Ru ₂₂ NiMoP ₂ /NF	60	[14]
Pt-Ru-Ni	65	[15]
RuFe-Ni ₂ P@NF	81	[16]
NiFeRuO _x /NF	98	[17]
Mo-Ni ₂ P/CC	154	[18]
NiCoN NixP NiCoN	165	[19]
Ru-WO _x	218	[20]
Ru-W-NiSe ₂ /NF	5	[21]

Table S. Comparison of the HER performance of the Ru-NiCoO₂/CC with other previously reported electrocatalysts with overpotential in 1.0 M KOH + seawater.

Reference

- [1] H. Liu, Y. Jiang, Y.N. Mao, The role of various components in Ru-NiCo alloys in boosting the performance of overall water splitting, J. Colloid Interface Sci., 2023, 633, 189-198.
- [2] C. Du, L. Yang, F.L. Yang, Nest-like NiCoP for Highly Efficient Overall Water Splitting, ACS Catal., 2017, 7, 4131-4137.
- [3] J.X. Guo, D.Y. Yan, K.W. Qiu, High electrocatalytic hydrogen evolution activity on a coupled Ru and CoO hybrid electrocatalyst, J. Energy Chem., 2019, 37, 143-147.
- [4] N. Liu, Z.H. Zhai, B. Yu, Bifunctional nanoporous ruthenium-nickel alloy nanowire electrocatalysts towards oxygen/hydrogen evolution reaction, Int. J. Hydrogen Energy, 2022, 47, 31330-31341.
- [5] Y. Feng, X.Y. Yu, U. Paik, Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution, Chem. Commun., 2016, 52, 1633-1636.
- [6] M. Li, X.T. Liu, Y.P. Xiong, Facile synthesis of various highly dispersive CoP nanocrystal embedded carbon matrices as efficient electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A, 2015, 3, 4255-4265.
- [7] Q. Liu, J.Q. Tian, W. Cui, Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-Metal Nanohybrid Electrocatalyst for Hydrogen Evolution, Angew. Chem. Int. Ed., 2014, 53, 6710-6714.
- [8] Z. Peng, D.S. Jia, A.M. Al-Enizi, From Water Oxidation to Reduction: Homologous Ni-Co Based Nanowires as Complementary Water Splitting Electrocatalysts, Adv. Energy Mater., 2015, 5, 1402031.
- [9] H. Cui, M. Jiang, G. Tan, The In-situ Growth of Ru Modified CoP Nanoflakes on Carbon Clothes as Efficient Electrocatalysts for HER**, Chemelectrochem, 2022, 9, 82.
- [10] X. Bai, Q.Q. Pang, X. Du, Integrating RuNi alloy in S-doped defective carbon for efficient hydrogen evolution in both acidic and alkaline media, Chem. Eng. J., 2021,

417, 129319.

- [11] Y. Wang, Q. Sun, Z. Wang, In situ phase-reconfiguration to synthesize Ru, B codoped nickel phosphide for energy-efficient hydrogen generation in alkaline electrolytes, J. Mater. Chem. A, 2022, 10, 16236-16242.
- [12] S.R. Wang, M.M. Wang, Z. Liu, Synergetic Function of the Single-Atom Ru-N₄ Site and Ru Nanoparticles for Hydrogen Production in a Wide pH Range and Seawater Electrolysis, ACS Appl. Mater. Interfaces, 2022, 14, 15250-15258.
- [13] H. Huang, H. Jung, C.Y. Park, Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater, Appl. Catal. B Environ., 2022, 315, 121554.
- [14] H.K. Sadhanala, A. Gupta, A. Gedanken, A bifunctional electrocatalyst for alkaline seawater splitting using ruthenium doped nickel molybdenum phosphide nanosheets, Sustain. Energy Fuels, 2023, 7, 4677-4686.
- [15] H.Y. Li, Q.W. Tang, B.L. He, Robust electrocatalysts from an alloyed Pt-Ru-M (M = Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting, J. Mater. Chem. A, 2016, 4, 6513-6520.
- [16] X.J. Zhai, Q.P. Yu, J.Q. Chi, Accelerated dehydrogenation kinetics through Ru, Fe dual-doped Ni₂P as bifunctional electrocatalyst for hydrazine-assisted selfpowered hydrogen generation, Nano Energy, 2023, 105, 108008.
- [17] Y. Liu, L. Chen, Y. Wang, NiFeRuO_x nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting, Front. Chem. Sci. Eng., 2023, 9, 1698–1706.
- [18] X. Li, Y.D. Wu, S.S. Li, Efficient hydrogen evolution of Ni₂P via incorporation of Mo for alkaline freshwater and seawater electrolysis, New J. Chem., 2022, 46, 20602-20609.
- [19] L. Yu, L.B. Wu, S.W. Song, Hydrogen Generation from Seawater Electrolysis over a Sandwich-like NiCoNINi_xPINiCoN Microsheet Array Catalyst, ACS Energy Lett., 2020, 5, 2681-2689.
- [20] Y. Zhang, W. Zheng, H. Wu, Tungsten oxide-anchored Ru clusters with

electron - rich and anti-corrosive microenvironments for efficient and robust seawater splitting, SusMat, 2023, 4, 106-115.

[21] Y.C. Dang, G.Q. Wang, X. Li, Enhanced alkaline/seawater hydrogen evolution reaction performance of NiSe₂ by ruthenium and tungsten bimetal doping, Int. J. Hydrogen Energy, 2023, 48, 17035-17044.