Supporting Information:

Construction of Oxygen Vacancies-Enriched Triple Perovskite Oxide Electrocatalyst for Efficient and Stable Oxygen Evolution in Acidic Media

Yuanyuan Wu^a, Tixuan Xia^b, Lu Yang^a, Feifan Guo^c, Wei Jiang^b, Jihui Lang^d, Yunchao Ma^a,

Jingdong Feng^a, Guangbo Che^{,e*}, Chunbo Liu^{b*}

^a Key Laboratory of Preparation Application of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Siping 136000, P. R. China

^b Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing

Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000,

P. R. China.

^c Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,

Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China

^d Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin

Normal University, Changchun, 130103, China

e College of Chemistry, Baicheng Normal University, Baicheng, 13700, P. R. China

* Corresponding author: Guangbo Che (guangboche@jlnu.edu.cn); Chunbo Liu (chunboliu@jlnu.e du.cn)

1. Experimental Section

1.1 Chemicals and Reagents

Potassium hexachloroiridate(IV) (K₂IrCl₆, 99.99%) and ruthenium(IV) oxide (RuO₂, 99%) were purchased from Aladdin. Ruthenium chloride hydrate (RuCl₃·xH₂O, 99%), citric acid (C₆H₈O₇), Nafion[®] perfluorinated resin solution, strontium acetate (C₄H₆O₄Sr) and isopropyl alcohol ((CH₃)₂CHOH) were purchased from Shanghai Macklin Biochemical Co., Ltd. Ethylene glycol ((CH₂OH)₂) were purchased from Beijing Chemical Factory. Hydrochloric acid (HCl), Sulfuric acid (H₂SO₄) and ethanol absolute (C₂H₆O) was purchased from Sinopharm Chemical.

1.2 Material Characterizations

The powder X-ray diffraction (XRD) patterns were conducted by a Rigaku D/Max 2550 Xray diffractometer with Cu K α radiation (λ = 1.5418 Å). The scanning electron microscope (SEM) images were obtained with a Regulus 8100 electron microscope. The transmission electron microscope (TEM) images and high-resolution transmission electron microscopy (HRTEM) images were carried out with a JEM-2100F transmission electron microscope. Energy dispersive X-ray (EDX) analysis was obtained with an EDX system attached to X-MaxN 80T transmission electron microscope (TEM). The XPS measurements were carried out on an ESCALAB 250Xi spectrometer (Thermo Scientific, USA) equipped with a pass energy of 30 eV with a power of 100 W (10 kV and 10 mA) and a mono-chromatized AlK α X-ray (h_v =1486.65 eV) source. All samples were analyzed under a pressure of less than 1.0×10⁻⁹ Pa. Spectra were acquired through the avantage software (Version 5.979) with a step of 0.05 eV.

1.3 DFT calculations

All the DFT calculations were conducted based on the Vienna Ab-inito Simulation Package (VASP) ^[1-2]. The exchange-correlation effects were described by the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) method ^[3-4]. The core-valence interactions were accounted by the projected augmented wave (PAW) method ^[5]. The energy cutoff for plane wave expansions was set to 450 eV, and the $2\times2\times1$ Monkhorst-Pack grid k-points were selected to sample the Brillouin zone integration. The vacuum space is adopted 15 Å above the surfaces to avoid periodic interactions. The structural optimization was completed for energy and force convergence set at 1.0×10^{-4} eV and 0.02 eV Å⁻¹, respectively.

The OER calaulation in acidic medium includes four-electron transfer procedure, and each reaction step as follows:

 $H_2O(l) + * \rightarrow OH^* + H^+ + e^ OH^* \rightarrow O^* + H^+ + e^ O^* + H_2O(l) \rightarrow OOH^* + H^+ + e^ OOH^* \rightarrow O_2(g) + H^+ + e^-$

where * refers to adsorption site of catalyst and *OOH, *O, *OH represent the reaction oxygen intermediates. The Gibbs free energy change (ΔG) of each step is calculated using the following formula:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S$$

where ΔE is the electronic energy difference directly obtained from DFT calculations, ΔZPE is the zero point energy difference, T is the room temperature (298.15 K) and ΔS is the entropy change. ZPE could be obtained after frequency calculation by ^[6]:

$$ZPE = \frac{1}{2} \sum hvi$$

And the TS values of adsorbed species are calculated according to the vibrational frequencies^[7]:

$$TS = k_B T \left[\sum_{k} ln^{\frac{1}{1-e^{-hv/k_B T}}} \right] + \sum_{k} \frac{hv}{k_B T} \frac{1}{(e^{hv/k_B T} - 1)} + 1 \right]$$

Fig. S1. X-ray diffraction (XRD) of (a) $Sr_xCa_{1-x}Ru_2IrO_9$ with different Sr: Ca atomic ratios and (b) $SrRuO_3$, Sr_2RuIrO_6 , $Sr_2CaRu_2IrO_9$ and Simulated double perovskite.

Fig. S2. (a-c) Scanning electron microscopy (SEM) of $Sr_{2.4}Ca_{0.6}Ru_2IrO_9$, $Sr_{1.5}Ca_{1.5}Ru_2IrO_9$ and $SrCa_2Ru_2IrO_9$.

Fig. S3. Energy dispersive X-ray spectroscopy (EDX) of Sr₂CaRu₂IrO₉

Fig. S4. (a) LSV curves of $Sr_2Ru_{2.5}Ir_{0.5}O_9$ and $Sr_2Ru_2IrO_9$. (b) LSV curves of $Sr_xCa_{1-x}Ru_2IrO_9$ with different Sr: Ca atomic ratios.

Fig. S5. Tafel slope of Sr_xCa_{1-x}Ru₂IrO₉ with different Sr: Ca atomic ratios.

Fig. S6. Chronopotentiometry curve of $Sr_xCa_{1-x}Ru_2IrO_9$ with different Sr: Ca atomic ratios.

Fig. S7. (a) HRTEM images, (b) XRD and (c) TE images of Sr₂CaRu₂IrO₉ after OER.

Fig. S8. EIS Nyquist plots of Sr_xCa_{1-x}Ru₂IrO₉ with different Sr: Ca atomic ratios.

Fig. S9. (a-g) CV curve of SrRuO₃, Sr₃Ru₂IrO₉, RuO₂ and Sr_xCa_{1-x}Ru₂IrO₉ with different Sr: Ca atomic ratios. (h) Double-layer capacitance of Sr_{2.4}Ca_{0.6}Ru₂IrO₉, Sr_{1.5}Ca_{1.5}Ru₂IrO₉ and SrCa₂Ru₂IrO₉.

Fig. S10. TOF values of Sr₂CaRu₂IrO₉, Sr₃Ru₂IrO₉, SrRuO₃ and commercial RuO₂.

References

- [1] G. Kresse, J. Hafner, Ab Initiomolecular Dynamics for Liquid Metals, *Phys. Rev. B* , 1993, 47, 558-561.
- [2] G. Kresse, J. Hafner, Ab Initiomolecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium, *Phys. Rev. B*, **1994**, 49, 14251-14269.
- [3] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.*, **1996**, 77, 3865-3868.
- [4] G. Kresse, D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B*, **1999**, 59, 1758-1775.
- [5] P. E. Blöchl, Projector Augmented-Wave Method, *Phys. Rev. B*, **1994**, 50, 17953-17979.
- [6] Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. *J. Phys. Chem. B*, **2004**, 108, 46, 17886–17892.
- [7] Bendavid LI, Carter EA. CO₂ Adsorption on Cu₂O(111): A DFT+U and DFT-D
 Study, J. Phys. Chem. C, 2013, 117, 49, 26048–26059.