Assembly of Si-Substituted Heteropolyoxotantalate

Architectures

Hanhan Chen, Haojie Xu, Xinyi Ma, Pengtao Ma, Jingping Wang,* and Jingyang Niu*

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China

Fax: +86-371-23886876; E-mail for Jingping Wang: jpwang@henu.edu.cn. and E-mail for Jingyang Niu: jyniu@henu.edu.cn.

Supporting Information

Experimental

Materials and Methods. Syntheses. X-ray crystallographic. Proton conduction experiments.

Tables.

Table S1. Summary of heteropolyoxoniobate.

Table S2. Summary of heteropolyoxotantalate and corresponding synthetic methods.

 Table S3. Crystallographic data and structure refinements for 1.

Table S4. Selected bond lengths (Å) of 1.

 Table S5. Summary of polyperoxo-polyoxometalate.

 Table S6. Bond angles (°) for Op-Ta-Op in 1.

Table S7. Assignment of peaks of 1 in negative mode mass spectrum.

Table S8. Data of proton conductivity σ (S·cm⁻¹) of **1** at various RH conditions under 25°C RH.

Table S9. Data of proton conductivity σ (S·cm⁻¹) of **1** at various temperature conditions under 95% RH.

Table S10. A comparison of the proton conductivity of 1 and all polyoxotantalates-based crystalline conducting materials.

 Table S11. A comparison of the proton conductivity of 1 and some other recent representative

 POMs-based crystalline conducting materials.

Table S12. Data of proton conductivity σ (S·cm⁻¹) of 1 at various temperature conditions under 75% RH.

Table S13. Data of proton conductivity σ (S·cm⁻¹) of **1** at various temperature conditions under 80% RH.

Table S14. Data of proton conductivity σ (S·cm⁻¹) of 1 at various temperature conditions under 85%

RH.

Table S15. Data of proton conductivity σ (S·cm⁻¹) of **1** at various temperature conditions under 90% RH.

 Table S16. Selected hydrogen bond distances for 1.

Table S17. BVS values for Ta and Si atoms in 1.

Table S18. BVS values for O atoms in 1.

Table S19. Calculated and found analyses of Na, K, Li, Si, and Ta with massic ratios in 1.

Figures

Fig. S1. The ball-and-stick representation of 1a.

Fig. S2. (a) The polyhedral/ball-and-stick representation of **1a**. (b) The ball-and-stick representation of **1a**. (c) The side view of **1a**. (d and e) The simplified diagram of **1a**. (Si, yellow; Ta, sea blue and green; O, red and lavender).

Fig. S3. The ball-and-stick representations of $\{cis-P_4Ta_6\}$ (a), $\{trans-P_4Ta_6\}$ (b), $\{Ln-As_4Ta_6\}$ (c), $\{Se_4Ta_6\}$ (d), $\{Ln-Se_4Ta_6\}$ (e), $\{Ni_2-P_4Ta_6\}$ (f), $\{Cd-P_4Ta_6\}$ and $\{Zn-P_4Ta_6\}$ (g). Color code: sea blue spheres: Ta; lavender spheres: μ_3 -O spheres; red spheres: O; yellow spheres: P, As, Se; green spheres: Ln, Ni, Cd, and Zn.

Fig.	S4 .	The	isosceles	tetrahedron	consists	of	Та	atoms	in	different	positions.
(∠Ta	a23Ta	22Ta2-	4=50.292°,					2	∠Ta2	21Ta22Ta24	4=58.762°,
∠Ta	23Ta2	2Ta21	=54.256°,∠	∠Ta22Ta24Ta	23=75.130)°,		2	∠Ta2	21Ta24Ta2	3=63.172°,
∠Ta	22Ta2	4Ta21	=57.118°,∠	∠Ta22Ta21Ta	24=64.120)°,		2	∠Ta2	23Ta21Ta24	4=58.106°,
∠Ta	22Ta2	21Ta23	=75.969°,∠	∠Ta22Ta23Ta	21=49.774	ŀ°,		2	∠Ta2	21Ta23Ta24	4=58.723°,
∠Ta	22Ta2	.3Ta24	=54.578°.)								
Fig.	S5 .	The	isosceles	tetrahedron	consists	of	Та	atoms	in	different	positions.
(∠Ta	a17Ta	18Tal	6=54.391°,					2	∠Tal	7Ta18Ta19	9=58.749°,
∠Ta	16Ta1	8Ta19	=49.859°,∠	Tal8Tal7Ta	16=75.528	8°,		2	∠Ta1	8Ta17Ta1	9=63.362°,
∠Ta	16Ta1	7Ta19	=57.407°,∠	Tal8Tal6Ta	19=54.183	,°°,		2	∠Ta1	7Ta16Ta1	9=58.732°,
∠Ta	18Ta1	6Ta19	=54.183°,∠	Tal8Tal9Ta	16=75.957	7°,		2	∠Tal	8Ta19Ta1′	7=57.889°,
∠Ta	17Tal	9Ta16	=63.863°.)								
Fig.	S6 .	The	isosceles	tetrahedron	consists	of	Та	atoms	in	different	positions.
(∠Ta	a12Ta	14Ta1	1=62.472°,					2	∠Tal	2Ta14Ta1	3=74.885°,
∠Ta	11Ta1	4Ta13	=57.727°,∠	Tal4Tal2Ta	11=59.226	5°,		2	∠Tal	4Ta12Ta1	3=54.770°,
∠Ta	11Ta1	2Ta13	=50.648°,∠	Tal2Tal1Ta	14=58.302	<u>?</u> °,		2	∠Ta1	4Tal1Tal	3=63.702°,
∠Ta	12Ta1	1Ta13	=75.700°,∠	∠Ta14Ta13Ta	11=58.570)°,		4	∠Ta1	2Ta13Ta1	1=53.652°,
∠Ta	14Tal	3Ta12	=50.345°.)								

Fig. S7. The packing arrangements of polyoxoanion 1a along the a(a), b(b) and c(c)-axis, respectively. And simplified 2D packing scheme for 1a along the a(d), b(e) and c(f)-axis, respectively.

Fig. S8. Polyhedral views of the 3D stacking for **1a** along the a(a), b(b) and c(c)-axis, respectively. And simplified 3D packing scheme for **1a** along the a(d), b(e) and c(f)-axis, respectively.

Fig. S9. ESI-MS spectra corresponding to the intact cluster of 1.

Fig. S10. Expanded region of the group of signals observed in the negative ESI mass spectrum of **1** illustrating the 6– charge state in a), 5– in b) and 4– in c).

Fig. S11. Nyquist plots for 1 under different RHs at 25 °C. The solid lines are the best fits.

Fig. S12. The equivalent circuit is used for fitting.

Fig. S13. Fitted data of **1** under different temperatures at 95% RH. (a): 25°C; (b): 35°C, (c): 45°C; (d): 55°C; (e):65°C, and (f): 75°C.

Fig. S14. Nyquist plots for 1 under different temperatures at 75% RH. The solid lines are the best fits.

Fig. S15. Nyquist plots for 1 under different temperatures at 80% RH. The solid lines are the best fits.

Fig. S16. Nyquist plots for 1 under different temperatures at 85% RH. The solid lines are the best fits.

Fig. S17. Nyquist plots for 1 under different temperatures at 90% RH. The solid lines are the best fits.

Fig. S18. PXRD of 1 calculated (black), crystalline sample (red), and after the proton-conductive measurement (blue).

Fig. S19. Void analysis of 1.

Fig. S20. In situ IR spectra of 1 under different water vapor pressure.

Fig. S21. Schematic diagram of hydrogen bonding networks consisting of water molecules inside the pore channels.

Fig. S22. IR spectrum of 1.

Fig. S23. TG curve of 1.

Experimental

Materials and Methods. All other chemicals were commercially purchased and utilized without undergoing additional purification. The potassium salt of the K₈[Ta₆O₁₉]·17H₂O and Na₁₀[A- α -SiW₉O₃₄]·18H₂O precursor was synthesized according to the procedures outlined in the existing literature and its identity was verified through IR spectroscopy.^{1,2} IR spectra of all compounds were obtained using a Bruker VERTEX 70 IR spectrometer with KBr pellets in the range of 4000–500 cm⁻¹. Thermogravimetric analysis (TGA) analyses was conducted using a NETZSCH STA 449 *F*5 Jupiter thermal analyzer under a flowing N₂ atmosphere with a heating rate of 10 °C min⁻¹. Powder X-ray diffraction (PXRD) data were conducted using an X-ray powder diffractometer (Bruker, *D*8 Advance) using Cu *K* α radiation ($\lambda = 1.5418$ Å) collected with the angular range (2 θ) from 5° to 45° at room temperature. ICP analyses were achieved on a PerkinElmer Optima 2000 ICP-OES spectrometer. The proton conduction data was collected by impedance phase gain analyzers Solartron 1296.

Syntheses of Li₇KNa₁₁H₆[Si₂Ta₂₄(O₂₎₂₀O₅₂(OH)9]·85H₂O (1). K₈[Ta₆O₁₉]·17H₂O (2.805 g, 1.397mmol) was dissolved in 150 mL of H₂O. Subsequently, 30 mL 30% H₂O₂ solution was added. This was followed by the sequential addition of 7 mL 1M HCl and 3.345 g Na₁₀[A- α -SiW₉O₃₄]·18H₂O. The suspension was agitated until a yellow clear solution was achieved, and 10 mL 6 M LiCl solution was added finally. The resulting solution was maintained at a temperature of 90 °C in a water bath for 3 h, followed by cooling to room temperature and subsequent filtration. Slow evaporation at room temperature led to the formation of colorless lamellar crystals for compound **1** after approximately one week. (yield: 8.60 % based on K₈[Ta₆O₁₉]·17H₂O). IR (KBr pellets, cm⁻¹): 3402 (br), 1643 (s), 951 (s), 891 (s), 844 (s), 741 (w), 515 (s).

X-ray crystallographic. The appropriate single crystal of compound 1 was affixed to the loop for

data collection at 150 K. Indexing and data collection was performed on a Bruker D8 VENTURE PHOTON II diffractometer, employing Mo K α radiation ($\lambda = 0.71073$ Å). Direct methods successfully located the tungsten atoms, and the remaining atoms were revealed through successive Fourier syntheses. Refinements were conducted through full-matrix least-squares on F^2 utilizing the SHELXL-2018 software suite for all the data.³ In the final refinement, all the non-hydrogen atoms except those water O atoms were refined anisotropically. Most lattice water molecules were located by using a Fourier map, and the remaining lattice water molecules were determined by TGA results. All hydrogen atoms on water molecules could not be well located from the electron density map, which were directly included in the molecular formula.

Proton conduction experiments. AC impedance measurements were carried out Solartron Analytical ModuLab 1296 at frequencies ranging from 1 Hz to 10 MHz. The relative humidity was monitored with a STIK Corp CIHI-150BS3 incubator. The samples were pressed into a cylindrical compact of crystalline powder sample (~1 mm thickness × 3 mm diameter). Two silver electrodes were fastened to both edges of the pellet, forming four end terminals (quasi-four-probe method). Each humidity equilibrium and the thermal equilibrium were preserved for 1 h. The ZsimpWin software was utilized to model the equivalent circuit of the impedance data. The proton conductivity (σ) and activation energy (*E*a) were calculated by the following two following equations:

$$\sigma = d/RS \qquad (1)$$

) $\sigma T = \sigma_0 \exp(-Ea/k_{\rm B}T)$ (2)

where d is the thickness (cm) of the slice, S is the electrode area (cm²), R is the resistance (Ω), σ_0 is the pre-exponential factor, T represents the absolute temperature, and $k_{\rm B}$ is the Boltzmann constant $(k_{\rm B} = 8.63 \times 10^{-5} \, {\rm eV/K}).$

	Year	Compounds	Ref.
1	2002	$K_{12}[Ti_2O_2][SiNb_{12}O_{40}]$ ·16H ₂ O	4
2		$Na_{14}[H_2Si_4Nb_{16}O_{56}]\cdot45.5H_2O$	
3	2004	$Na_{16}[SiNb_{12}O_{40}]\cdot 4H_2O$	5
4		$Na_{16}[GeNb_{12}O_{40}]\cdot 4H_2O$	
5	2005	$Na_{12}[Ti_2O_2][SiNb_{12}O_{40}]\cdot xH_2O$	6
6		$Na_{12}[Ti_2O_2][GeNb_{12}O_{40}]\cdot xH_2O$	
7		$Na_{10}[Nb_2O_2][SiNb_{12}O_{40}]\cdot xH_2O$	
8		$Na_{10}[Nb_2O_2][GeNb_{12}O_{40}] \cdot xH_2O$	
9	2006	$Na_{15}[(PO_2)_3PNb_9O_{34}] \cdot 22H_2O$	7
10	2007	$Li_{13}K[SiNb_{12}(OH)_2O_{38}]$ ·17H ₂ O	8
11	2007	$K_{10}[Nb_2O_2][GeNb_{12}O_{40}] \cdot 11H_2O$	9
12	2011	$K_{10}[Nb_2O_2(H_2O)_2][SiNb_{12}O_{40}]\cdot 12H_2O$	10
13	2011	$Cs_{13}Na[SiNb_{18}O_{54}]\cdot 22H_2O$	11
14		$Rb_{12}Na_2[SiNb_{18}O_{54}]\cdot 25H_2O$	
15		$K_{10}Na_{2}[H_{2}SiNb_{18}O_{54}]$ ·33 $H_{2}O$	

Table S1. Summary of heteropolyoxoniobate.

16 2011 $[Cu(en)_2]_{3.5}[Cu(en)_2(H_2O)]{[VNb_{12}]}$		$[Cu(en)_2]_{3.5}[Cu(en)_2(H_2O)]{[VNb_{12}O_{40}(VO)_2][Cu(en)_2]} \cdot 1$	12	
			7H ₂ O	
	17	2012	${[Cu_{6}L_{6}(H_{2}O)_{3}][Nb_{10}V_{4}O_{40}(OH)_{2}]}_{2}\cdot 13H_{2}O$	13
	18	2012	$K_{14}Na[GaNb_{18}O_{54}]$ ·28 H_2O	14
	19		$K_{14}H[AlNb_{18}O_{54}]\cdot 31H_2O$	
	20		$Rb_{15}[GaNb_{18}O_{54}]\cdot 35H_2O$	
	21		$Cs_{13}Na_2[GaNb_{18}O_{54}]\cdot 20H_2O$	
	22	2012	$[Cu(en)_2]_3 \{ [Cu(en)_2] [H_2V_4Nb_6O_{30}] \} \cdot 12H_2O$	15
	23		$[Cu(1,2-dap)_2]_4[H_2V_4Nb_6O_{30}]\cdot 16H_2O$	
	24		$[Cu(1,2\text{-}dap)_2][Na_2(H_2O)_9][H_6V_4Nb_6O_{30}]\cdot 15H_2O$	
	25	2012	$[Cu(en)_2]_3\{[Cu(en)_2][H_6SiNb_{18}O_{54}]\}\cdot 22H_2O$	16
	26	2013	$TMA_9[PV_2Nb_{12}O_{42}]\cdot 19H_2O$	17
	27	2013	$Na_{4}[Cu(en)_{2}(H_{2}O)_{2}]_{5}[Na_{6}Ge_{8}Nb_{32}O_{108}H_{8}(OH)_{4}]\cdot 41H_{2}O$	18
	28	2013	$(C_2N_2H_{10})_6[(GeOH)_2Ge_2Nb_{16}H_2O_{54}] \cdot 25H_2O_{54}]$	19
	29		$[Cu(en)_2(H_2O)_2]_5K_{10}[K(GeOH)_2Ge_2Nb_{16}H_3O_{54}]_2\cdot 38H_2O$	
	30	2013	$(TMA)_9[V_3Nb_{12}O_{42}] \cdot 18H_2O$	20
	31	2013	$Rb_{13}[GeNb_{13}O_{41}]\cdot 23H_2O$	21
	32		$Cs_{10.6}[H_{2.4}GeNb_{13}O_{41}] \cdot 27H_2O$	
	33		$Cs_{18}H_6[(NbOH)SiNb_{12}O_{40}]_2\cdot 38H_2O$	
	34	2014	$TMA_5[H_2TeNb_5O_{19}] \cdot 20H_2O$	22
	35	2014	$[Cu(en)_2]_4[PNb_{12}O_{40}(VO)_6] \cdot (OH)_5 \cdot 8H_2O$	23
	36		$[Cu(enMe)_2]_4[PNb_{12}O_{40}(VO)_6] \cdot (OH)_5 \cdot 6H_2O$	
	37	2014	$\{Ni(en)_3\}_5H\{V^VNb_8V^{IV}_8O_{44}\}\cdot 9H_2O$	24
	38		$(H_2en)Na_2[\{Zn(en)_2(Hen)\}\{Zn(en)_2(H_2O)\}_2\{PNb_8V^{IV}{}_8O_{44}$	
			}]·11H ₂ O	
	39		$Na\{Cu(en)_2\}_3\{[Cu(en)_2]_2[PNb_8V^{IV}_8O_{44}]\}\cdot 11H_2O$	
	40	2014	${Cu(en)_2}_6 {GeNb_{12}V^{IV}_2O_{42}} \cdot 20H_2O$	25
	41		${Cu(en)_2}_3K_2Na_4{GeNb_{12}V^{IV}_2O_{42}} \cdot 23H_2O$	
	42		${Cu(en)_2}_6{SiNb_{12}V^{IV}_2O_{42}} \cdot 18H_2O$	
	43		${Cu(en)_2}_3K_2Na_4{SiNb_{12}V^{IV}_2O_{42}}$ ·19H ₂ O	
	44	2015	$TMA_9[PSb_2Nb_{12}O_{40}]\cdot 28H_2O$	26
	45		$TMA_9[PNb_{14}O_{42}]\cdot 26H_2O$	
	46		$TMA_{10}[H_5PNb_{12}O_{40}] \cdot 30.5H_2O$	
	47	2015	$(TMA)_9H_3Nb_9P_5O_{41} \cdot 28H_2O$	27
	48	2015	$[Cu(en)_{2}(H_{2}O)][Cu(en)_{2}]_{4}\{AsNb_{9}V_{7}O_{44}\}\cdot 8H_{2}O$	28
	49		$[Cu(en)_{2}(H_{2}O)][Cu(en)_{2}]_{4}H\{AsNb_{8}V_{8}O_{44}\}\cdot 11H_{2}O$	
	50		$\{V^{V}(H_{2}O)_{6}\}_{0.5}\{Co^{II}(en)_{2}\}_{4}\{SNb_{8}V^{IV}{}_{8}V^{V}{}_{1.25}O_{45.25}\}(OH)_{4.25}\cdot$	

		3H ₂ O	
51	2016	$[\text{Co-}(\text{pn})_2]_4[\text{HPNb}_{10}\text{V}^{\text{IV}}_2\text{O}_{40}(\text{V}^{\text{IV}}\text{O})_4] \cdot 17\text{H}_2\text{O}$	29
52		$[\text{Co-}(\text{pn})_2]_4[\text{HPNb}_{10}\text{V}^{\text{IV}}_2\text{O}_{40}(\text{V}^{\text{IV}}\text{O})_4]\cdot 17\text{H}_2\text{O}$	
53	2016	$Na_{9}H_{4}[VNb_{12}O_{40}\{NbO(CO_{3})\}_{2}]\cdot 37H_{2}O$	30
54		$[Nb_{24}O_{76}V_4]^{12-}$	
55		$[V_3Nb_{24}O_{76}]^{17-}$	
56	2016	$[Cu(dap)_2]_4[AsNb_{12}O_{40}(VO)_4](OH) \cdot 7H_2O$	31
57	2017	$H_{13}[(CH_3)_4N]_{12}[PNb_{12}O_{40}(V^VO)_2 \cdot (V^{IV}_4O_{12})_2] \cdot 22H_2O$	32
58	2017	$Na_{28}K_{16}H_{10}[Li_8 \subset Nb_{114}O_{316}]$	33
59		$Na_{17}K_{12}H_{12}[Li_3K \subset Nb_{81}O_{225}]$	
60		$H_4Na_6K_{22}Cs_4[H_4Nb_{52}O_{150}]$	
61		$Na_{11}H_{25}[Cu(H_2O)_4]\{[Cu(en)_2]_3(K \subset H_3Cu_3Nb_{78}O_{222})\}$	
62		$Na_{4}K_{2}H_{16}[Cu(en)_{2}]_{0.5}\{[Cu(en)_{2}]_{9.5}(K \subset H_{3}Cu_{4}(en)Nb_{78}O_{222})\}$	
63	2017	$Na_{14}K_7H_5\{As_4Cu_4[Cu(H_2O)]_{12}Nb_{28}O_{109}\}\cdot 37.5H_2O$	34
64	2017	$K_3Na_2H_9(H_2en)_2[Fe_3Nb_{25}O_{76}] \cdot 17H_2O$	35
65	2017	$[Cu^{II}(C_2N_2H_8)_2]_4[Cu^{II}(C_2N_2H_8)_2(H_2O)_2]_2[PNb_{12}O_{40}V^VV^{IV}O_2] \cdot (OH)_2 \cdot 11H_2O$	36
66	2017	$K_{4}[\{Cu(en)_{2}(H_{2}O)\}_{4}\{Cu(en)_{2}\}(H_{2}Te_{2}Nb_{24}O_{72})]\cdot 8H_{2}O$	37
67	2017	$\begin{split} H[Cu(en)_{2}(H_{2}O)]_{8}[Cu(en)_{2}(H_{2}O)_{2}]_{2}\{K_{4}[Cu(en)_{2}]_{2}[Cu(en)_{2}(GeNb_{18}O_{54})]_{2}\}[Nb_{3}W_{3}O_{19}]\cdot 32H_{2}O \end{split}$	38
68	2017	$[Cu(en)_2]_4[Cu(en)_2(H_2O)_2]_2[SiNb_{12}V_2O_{42}] \cdot 14H_2O$	39
69		$[Cu(en)_2]_2[Cu(en)_2(H_2O)]_4[SiNb_{12}V_2O_{42}]\cdot 4H_2O$	
70		$[Cu(en)_{2}(H_{2}O)_{2}]_{4}[Cu(en)_{2}(H_{2}O)]_{2}[SiNb_{12}V_{2}O_{42}]\cdot11H_{2}O$	
71	2019	$K_{6}[H{Cu(phen)}_{12}(H_{2}O)_{2}(Te_{5}Nb_{15.5}Cu_{0.5}O_{57})_{2}]\cdot48H_{2}O$	40
72		$\{[\{Cu(phen)\}_{6}(H_{2}O)]_{2}[Cu(en)_{2}]_{3}(HTe_{10}Nb_{31}CuO_{114})\} \cdot 52H_{2}O\}$	
73		${[Cu(en)_2][Cu(en)_2(H_2O)][Cu(1,10-phen)][Cu(1,10-phen)(H_2O)]Nb_6O_{19}}$	
74	2020	$K_2Na_2H_{16}(H_2O)_4[Cu(en)_2]_2[Cu(en)_2(H_2O)]_4\{[Cu(en)_2]_6[Si Nb_{18}O_{54}]_3\}\cdot 34H_2O$	41
75	2020	$K_3[Nb_2O_2][H_7SiNb_{12}O_{40}] \cdot 16H_2O$	42
76		$[Cu(en)_2]_9[(VNb_{12}V_{1.69}Nb_{0.31}O_{42}en_{0.31})_2]\cdot 20.69H_2O$	

77	2020	$[{Cu(en)(H_2O)_4} {Cu(en)_2(H_2O)} {Cu(en)_2(H_2O)_2}]_{1.5}[H_8Si$	43
		$Te_8Nb_{15}O_{64}]\cdot 6H_2O$	
78	2020	$H_{16}K_{24}Na_{26}[Cu_3(en)_6][(\beta-H_4Nb_{52}O_{150})_2]\cdot88H_2O$	44
79	2020	$K_6Na_{17}[H_3\{Co(H_2O)_3\}_2(P_4Nb_9O_{40})_2]\ 24H_2O$	45
80	2020	$(CN_{3}H_{6})_{8}K_{4}\{[Cu(phen)]_{5}[Nb_{6}O_{19}][As_{2}Nb_{6}O_{22}]\}_{2}\cdot24H_{2}O$	46
81	2021	$K_{20}Na_{19}[H_{18.5}\{Cu(en)_2\}_2(H_4Cu_2Nb_{72}O_{205})]_2\cdot 77H_2O$	47
82	2021	$H_4K(CN_3H_6)_2\{[Cu_4(2,2-$	48
		bipy) ₄ (H ₂ O) ₂][TeNb ₉ V ₂ O ₃₇]} ·29H ₂ O	
83		$H_{0.5}K_5Na_{2.5}\{[Cu(en)H_2O]_3[TeNb_9V_3O_{39}]\}\cdot 10H_2O$	
84		$K_{3}Na_{5}\{[Cu(1,3-dap)H_{2}O]_{3}[TeNb_{9}V_{3}O_{39}]\}\cdot 11H_{2}O$	
85	2021	$H_4Na_8K_6[Sb_2Nb_{24}O_{72}]\cdot 30H_2O$	49
86	2021	$K_2H[Cu(phen)(H_2O)]_4[Cu(phen)]_2[(LiNb_8Te_4O_{40})]\cdot 34H_2O$	50
87	2021	$H_9KNa_2(H_2O)_{10}[Co(H_2O)_2(SiNb_{18}O_{54})] \cdot 15H_2O$	51
88	2021	$\label{eq:cuency} \begin{split} & [Cu(en)_2]_2\{[Cu(en)_2]_2K_4Ba_2(H_2O)_{13}(SiNb_{18}O_{54})\}_2\cdot 3en\cdot 52H\\ & _2O \end{split}$	52
89		$\begin{array}{l} H_{6}[Cu(en)_{2}]_{2}\{[Cu(en)_{2}]_{2}NaBa_{2}(H_{2}O)_{7}(SiNb_{18}O_{54})\}2\cdot 3en\cdot 5\\ 0H_{2}O\end{array}$	
90	2022	$\begin{split} H_{5}[Cu(H_{2}O)(en)_{2}]_{2}[Cu(H_{2}O)_{2}(en)_{2}]\{[Cu(en)_{2}(H_{2}O)]_{2}Eu(H_{2}O)_{3}Te_{6}Nb_{18}O_{64}(OH)_{4}\}\cdot7H_{2}O \end{split}$	53

L=1,10-phenanthroline;¹³ 1,2-dap=1,2-diaminopropane;¹⁵ en=ethylenediamine;^{18, 28, 33, 35, 37–43, 47, 52, ⁵³ enMe = 1,2-diaminopropane;²³ pn = 1,2-diaminopropane;²⁹ dap = 1,2- diaminopropane;³¹ 1,10- phen =1,10-phenanthroline hydrate;⁴⁰ phen = 1,10-phenanthroline;^{46, 50} 2,2'-bipy = 2,2'-bipyridine;⁴⁸ 1,3-dap = 1,3-diaminopropane;⁴⁸}

Year	Compounds	Synthetic	Reagents and Precursor	Ref.
		method		
2016	[Ti ₂ Ta ₈ O ₂₈] ⁸⁻	Hydrothermal	hydrous tantalum oxide (83	54
		(140°C for 16	% w/w), TMAOH \cdot 5H ₂ O,	
		h),	titanium isopropoxide	
		postprocessing		
2016	$[Ti_{12}Ta_6O_{44}]^{10-}$	Hydrothermal	hydrous tantalum oxide (83	54
		(150°C for 16	% w/w), TMAOH \cdot 5H ₂ O,	
		h),	titanium isopropoxide	
		postprocessing		
2017	$[P_4(TaO_2)_6O_{25}]^{12-}$	80 °C for 3 h	$K_8[Ta_6O_{19}] \cdot 17H_2O, H_2O_2,$	55
			H ₃ PO ₄	
2017	$[P_4(TaO_2)_6O_{24}]^{10-}$	80 °C for 3 h	$K_8[Ta_6O_{19}] \cdot 17H_2O, H_2O_2,$	55

Table S2. Summary of heteropolyoxotantalate and corresponding synthetic methods.

2019	$[I, n(H_2O)_c \{H_4(T_2O_2)_c A_{S_4}O_2\}$	90 °C for 3 h	H_3PO_4 $K_8[Ta_6O_{19}] \cdot 17H_2O_2 H_2O_2$,	56
	4}] ³⁻		NaAsO ₂ , Ln(NO ₃) ₃ ·6H ₂ O	
2020	$[Se_4(TaO_2)_6(OH)_4O_{17}]^{4-}$	60 °C for 3 h	$K_8[Ta_6O_{19}] \cdot 17H_2O, H_2O_2, Na_2SeO_3$	57
2020	$[Ln(H_2O)_6(TaO_2)_6Se_4(OH)_3$ $O_{18}]^{2-}$	stirring	K ₈ [Ta ₆ O ₁₉]·17H ₂ O, H ₂ O ₂ , Na ₂ SeO ₃ , LnCl ₃ ·6H ₂ O, CsCl	57
2022	$[Ni_{2}(H_{2}O)_{10}\{P_{4}Ta_{6}(O_{2})_{6}O_{24}\}]^{6-}$	90 °C for 1 h	$K_8[Ta_6O_{19}] \cdot 17H_2O, H_2O_2,$ NiCl ₂ ·6H ₂ O, H ₃ PO ₄ , CsCl	58
2022	$[Zn(H_2O)_4\{P_4Ta_6(O_2)_6O_{24}\}]_{8-}$	90 °C for 1 h	$K_8[Ta_6O_{19}] \cdot 17H_2O, H_2O_2,$ ZnSO ₄ ·7H ₂ O, H ₃ PO ₄ , CsCl	58
2022	$[Cd(H_2O)_4\{P_4Ta_6(O_2)_6O_{24}\}]_{8-}$	90 °C for 1 h	$\begin{array}{l} K_8[Ta_6O_{19}] \cdot 17H_2O, H_2O_2, \\ CdCl_2, H_3PO_4, CsCl \end{array}$	58
2023	$[Cu(en)_2(H_2O)_2]_2[Cu(en)_2][$ $P_2O_7Ta_5O_{14}]^-$	80 °C for 3 d	$Na_{8}Ta_{6}O_{19} \cdot 24.5H_{2}O,$ $Na_{4}P_{2}O_{7} \cdot 10H_{2}O, en,$ $CuCl_{2} \cdot 2H_{2}O$	59
2023	$[Cu(en)_{2}(H_{2}O)_{2}][Cu(en)_{2}(H_{2}O)] \{ [Cu-en)_{2}]_{1.5}[(P_{2}O_{7})Ta_{5}O_{14}] \}$	80 °C for 3 d	Na ₈ Ta ₆ O ₁₉ ·24.5H ₂ O, Na ₄ P ₂ O ₇ ·10H ₂ O, en, CuCl ₂ ·2H ₂ O	59
2023	$[Cu(en)_2]{[Cu-en)_2]_2[(P_2O_7)Ta_5O_{14}]}$	80 °C for 3 d	$Na_8Ta_6O_{19}$ ·24.5H ₂ O, $Na_4P_2O_7$ ·10H ₂ O, Na_2TeO_3 , en, CuCl ₂ ·2H ₂ O	59

en=ethylenediamine59

 Table S3. Crystallographic data and structure refinements for 1.

	1
Empirical formula	$KNa_{11}O_{158.5}Si_{2}Ta_{24}$
Formula weight	7226.97
Temperature / K	150
Crystal system	triclinic
Space group	<i>P</i> -1
<i>a</i> [Å]	19.495(5)
<i>b</i> [Å]	19.844(6)
<i>c</i> [Å]	21.896(7)
α [°]	73.755(10)
β [°]	81.216(7)
γ [°]	66.588(8)

V[Å ³]	7455(4)
Ζ	2
$ ho_{ m calcd} [{ m g \ cm^{-3}}]$	3.219
$\mu [\mathrm{mm}^{-1}]$	17.730
F(000)	6376.0
	$-23 \le h \le 23$
Index ranges	$-23 \le k \le 23$
	$-26 \le l \le 26$
Reflections collected	155083
Independent reflections	26519
	$[R_{\rm int} = 0.0828]$
data/restraints/ parameters	26519/60/1736
Goodness-of-fit on F^2	1.019
$R_1, wR_2 [I > 2\sigma(I)]$	0.0437, 0.1111
R_1 , wR_2 [all data]	0.0560, 0.1222
Largest diff. Peak/hole/e Å ⁻³	4.05/-3.02

Table S4. Selected bond lengths (\AA) of 1.

Bond	Length	Bond	Length	Bond	Length
Ta16-O100	2.013(12)	Ta16-O36	1.988(11)	Ta7-O70	2.010(11)
Ta1-O101	2.026(13)	Ta20-O36	1.935(11)	Ta9-O70	2.002(11)
Ta21-O102	2.129(12)	Ta12-O37	2.102(11)	Ta17-O71	1.985(12)
Ta23-O102	2.172(12)	Ta15-O37	2.201(11)	Ta19-O72	2.000(13)
Ta3-O103	2.062(12)	Ta19-O38	1.917(11)	Ta23-O73	1.984(12)
Ta21-O104	2.017(11)	Ta20-O38	2.013(11)	Ta24-O73	1.983(11)
Ta22-O104	1.937(12)	Ta21-O39	2.168(11)	Ta13-O75	1.982(11)
Ta24-O105	1.989(13)	Ta22-O39	2.155(11)	Ta8-O76	2.135(11)
Ta1-O106	1.931(12)	Ta23-O39	2.159(11)	Ta9-O76	2.195(11)
Ta2-O106	2.023(12)	Ta24-O39	2.189(11)	Ta11-O78	1.997(12)
Ta4-O107	1.986(14)	Ta11-O40	1.996(11)	Ta2-O79	2.100(11)
Ta7-O110	1.984(12)	Ta13-O40	1.990(11)	Ta3-O79	2.155(12)
Ta23-O111	1.992(12)	Ta10-O41	1.962(11)	Ta23-O80	2.065(11)
Ta4-O113	1.996(13)	Ta11-O41	1.945(11)	Ta2-O82	2.009(12)
Ta6-O114	1.982(12)	Ta10-O42	2.045(11)	Ta4-O82	1.943(12)
Ta22-O116	1.995(13)	Ta12-O42	1.908(11)	Ta17-O83	1.940(12)
Ta3-O118	1.999(13)	Ta6-O43	2.008(11)	Ta19-O83	1.996(12)
Ta1-O120	1.990(12)	Ta10-O43	1.906(11)	Ta14-O84	1.997(12)
Ta3-O120	1.979(12)	Ta16-O44	1.997(11)	Ta4-O85	1.997(12)
Ta11-O122	1.973(12)	Ta2-O45	1.893(11)	Ta18-O86	2.005(12)

Ta7-O123	1.998(13)	Ta5-O45	2.021(11)	Ta1-O88	2.113(12)
Ta18-O126	2.004(12)	Ta4-O46	1.962(11)	Ta4-O88	2.153(12)
Ta8-O128	1.985(13)	Ta5-O46	1.944(11)	Ta1-O89	2.179(12)
Ta6-O132	2.005(13)	Ta17-O47	1.989(11)	Ta2-O89	2.187(12)
Ta8-O133	1.998(14)	Ta18-O47	1.971(11)	Ta3-O89	2.139(11)
Ta3-O134	1.981(12)	Ta14-O48	1.942(11)	Ta4-O89	2.161(11)
Ta2-O135	1.993(15)	Ta15-O48	1.947(11)	Ta24-O90	2.052(12)
Ta9-O136	2.004(12)	Ta20-O49	2.010(11)	Ta24-O91	1.983(14)
Ta2-O137	1.977(13)	Ta23-O49	1.916(11)	Ta22-O93	2.156(12)
Ta21-O140	1.986(15)	Ta16-O50	1.973(11)	Ta24-O93	2.116(12)
Ta22-O141	1.991(13)	Ta19-O50	2.013(11)	Ta19-O94	1.982(12)
Ta1-O146	1.971(13)	Ta13-O51	1.988(11)	Ta23-O95	1.991(12)
Ta11-O15	2.204(11)	Ta18-O52	2.123(12)	Ta9-O96	2.005(12)
Ta12-O15	2.124(11)	Ta19-O52	2.132(12)	Ta12-O97	1.973(13)
Ta13-O15	2.172(11)	Ta8-O53	1.925(11)	Ta21-O98	2.043(12)
Ta14-O15	2.172(11)	Ta10-O53	1.972(11)	Ta24-O98	1.918(12)
Ta1-O152	1.962(14)	Ta6-O54	2.176(11)	Si1-O101	1.622(13)
Ta21-O155	1.986(14)	Ta7-O54	2.117(11)	Si1-O103	1.631(12)
Ta5-O16	1.926(11)	Ta15-O55	1.907(11)	Si1-O108	1.627(13)
Ta9-O16	2.006(11)	Ta18-O55	2.015(12)	Si1-085	1.648(12)
Ta16-O18	2.158(10)	Ta5-O56	1.992(12)	Si2-O90	1.624(13)
Ta17-O18	2.198(10)	Ta6-O56	1.921(12)	Si2-O69	1.641(12)
Ta18-O18	2.154(10)	Ta20-O57	2.036(12)	Si2-O80	1.638(11)
Ta19-O18	2.189(11)	Ta21-O57	1.886(12)	Si2-O108	1.617(13)
Ta15-O20	1.987(11)	Ta20-O58	1.942(11)	O44-O100	1.513(16)
Ta16-O20	1.923(11)	Ta22-O58	1.979(11)	051-075	1.502(16)
Ta13-O22	2.154(10)	Ta16-O59	2.168(11)	O60-O71	1.514(17)
Ta14-O22	2.133(10)	Ta17-O59	2.138(11)	063-084	1.531(16)
Ta9-O24	1.901(11)	Ta17-O60	1.966(12)	O68-O97	1.526(17)
Ta10-O24	2.021(11)	Ta6-O61	1.982(11)	072-094	1.496(17)
Ta5-O26	1.987(11)	Ta8-O61	1.974(11)	078-0122	1.503(17)
Ta7-O26	1.929(11)	Ta7-O62	1.987(12)	O86-O126	1.534(17)
Ta15-O28	1.954(10)	Ta8-O62	1.994(11)	O91-O105	1.534(19)
Ta17-O28	1.965(10)	Ta14-O63	1.999(12)	095-0111	1.510(17)
Ta10-O29	1.962(11)	Ta3-O64	1.922(11)	O96-O136	1.501(16)
Ta13-O29	1.987(11)	Ta5-O64	2.003(11)	0107-0113	1.529(19)
Ta13-O31	1.947(10)	Ta12-O65	1.983(11)	0110-0123	1.497(17)
Ta15-O31	1.990(10)	Ta14-O65	1.996(11)	0114-0132	1.508(17)
Ta6-O33	2.155(11)	Ta11-O66	2.088(11)	0116-0141	1.510(18)
Ta7-O33	2.181(11)	Ta12-O66	2.113(11)	0118-0134	1.535(18)
Ta8-O33	2.186(11)	Tall-O67	2.002(12)	0128-0133	1.546(18)
Ta9-O33	2.141(11)	Ta14-O67	1.972(12)	0135-0137	1.498(19)
Ta18-O35	1.929(11)	Ta12-O68	1.990(12)	0140-0155	1.52(2)

Ta20-O35	1.974(11)	Ta22-O69	2.005(11)	0146-0152	1.508(19)

	Year	Compounds	Ref.
1	1997	$(H_3Cs_{5.6}K_{3.1}Li_{0.3})[P_2W_{12}(NbO_2)_6O_{56}]$ ·11H ₂ O	60
2	2010	$Cs_{6.5}K_{0.5}[GeW_9(NbO_2)_3O_{37}]\cdot 6H_2O$	61
3	2011	$Cs_5K[AsW_9(NbO_2)_3O_{37}]$ ·7H ₂ O	62
4	2011	$K_{12}[Zr_2(O_2)_2(\alpha-SiW_{11}O_{39})_2]\cdot 25H_2O$	63
5		$K_{12}[Zr_2(O_2)_2(\alpha-GeW_{11}O_{39})_2]$ ·25H ₂ O	
6		$K_{10.5}Rb_{1.5}[Hf_2(O_2)_2(\alpha-SiW_{11}O_{39})_2]$ ·21H ₂ O	
7		$K_{18}[Zr_6(O_2)_6(OH)_6(\gamma\text{-}SiW_{10}O_{36})_3]\cdot59H_2O$	
8		$K_{18}[Hf_6(O_2)_6(OH)_6(\gamma-SiW_{10}O_{36})_3]$ · 59H ₂ O	
9	2012	$Na_6Li_{24}\{[W_5O_{21}]_3[(U^{VI}O_2)_2(\mu - O_2)]_3\}$	64
10	2012	$K_5Na_4[P_2W_{15}O_{59}(TaO_2)_3]\!\cdot\!17H_2O$	65
11		$Cs_{3}K_{3.5}H_{0.5}[SiW_{9}(TaO_{2})_{3}O_{37}]\cdot 9H_{2}O$	
12	2014	$K_4Na_4[H_6P_2W_{12}Nb_4O_{59}(NbO_2)_2]_2\cdot 48H_2O$	66
13	2017	$Cs_3[H_9P_4Ta_6(O_2)_6O_{25}]$ · 9H ₂ O	55
14		$(CN_{3}H_{6})_{6}[H_{4}P_{4}Ta_{6}(O_{2})_{6}O_{24}]\cdot 4H_{2}O$	
15	2019	$Cs_{3}[Ln-(H_{2}O)_{6}\{H_{4}(TaO_{2})_{6}As_{4}O_{24}\}]\cdot 7H_{2}O$	56
16	2019	$Na_{24}[Ce^{IV}_{6}(O_{2})_{9}(GeW_{10}O_{37})_{3}]$ ·100H ₂ O	67
17		$Na_{24}[Ce_6(O_2)_9(SiW_{10}O_{37})_3]$ ~ 100H ₂ O	
18	2020	Cs ₂ KH[(TaO ₂) ₆ Se ₄ (OH) ₄ O ₁₇]·10H ₂ O	57
19		$CsK[Ln(H_2O)_6(TaO_2)_6Se_4(OH)_3O_{18}]$ ·11H ₂ O	
20	2020	$Cs_{3}H_{3}[Ni_{2}(H_{2}O)_{4}\{P_{4}Ta_{6}(O_{2})_{6}O_{24}\}]\cdot 7H_{2}O$	58
21		$Cs_{3}NaH_{4}[Zn(H_{2}O)_{4}\{P_{4}Ta_{6}(O_{2})_{6}O_{24}\}]^{-}13H_{2}O$	
22		$Cs_{3}NaH_{4}[Cd(H_{2}O)_{4}\{P_{4}Ta_{6}(O_{2})_{6}O_{24}\}]\cdot 8H_{2}O$	
23	2022	$CsK[Ln(H_2O)_6Se_4(TaO_2)_6(OH)_3O_{18}]\cdot nH_2O$	68

 Table S5. Summary of polyperoxo-polyoxometalate.

able So. Bond angles () for Op Ta Op in T.						
Bond	Angle	Bond	Angle			
O146-Ta1-O152	45.1(6)	O51-Ta13-O75	44.5(5)			
O135-Ta2-O137	44.3(5)	O63-Ta14-O84	45.0(5)			
0110 = 0.0104	45 4(5)	044 5 16 0100	44.9(5)			

 Table S6. Bond angles (°) for Op-Ta-Op in 1.

O135-Ta2-O137	44.3(5)	O63-Ta14-O84	45.0(5)
O118-Ta3-O134	45.4(5)	O44-Ta16-O100	44.3(5)
O107-Ta4-O113	45.1(5)	O60-Ta17-O71	45.1(5)
O114-Ta6-O132	44.4(5)	O86-Ta18-O126	45.0(5)
O110-Ta7-O123	44.2(5)	O72-Ta19-O94	44.2(5)
O128-Ta8-O133	45.7(5)	O140-Ta21-O155	44.9(6)

O96-Ta9-O136	44.0(5)	O116-Ta22-O141	44.5(5)
O78-Ta11-O122	44.5(5)	O95-Ta23-O111	44.5(5)
O68-Ta12-O97	45.3(5)	O91-Ta24-O105	45.4(5)

 Table S7. Assignment of peaks of 1 in negative mode mass spectrum.

Species	Sim. m/z	Exp. m/z
[KH ₂₇ Si ₂ Ta ₂₄ (O ₂) ₂₀ O ₅₂ (OH) ₉] ⁶⁻	1013.40	1013.42
$[KLiH_{26}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1014.40	1014.43
$[KLi_{2}H_{25}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{6-}$	1015.40	1015.43
$[KNaH_{26}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1017.06	1017.09
[KNaLiH ₂₅ Si ₂ Ta ₂₄ (O ₂) ₂₀ O ₅₂ (OH) ₉] ⁶⁻	1018.06	1018.09
$[K_2H_{26}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1019.72	1019.75
$[K_{2}LiH_{25}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{6-}$	1020.72	1020.75
$[K_2Li_2H_{24}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1021.72	1021.76
$[K_2NaH_{25}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1023.38	1023.41
$[K_2NaLiH_{24}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1024.39	1024.42
$[K_{3}H_{25}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{6-}$	1026.05	1026.07
$[K_{3}LiH_{24}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{6-}$	1027.05	1027.07
$[K_{3}Li_{2}H_{23}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{6-}$	1028.05	1028.07
$[K_{3}NaH_{24}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{6-}$	1029.71	1029.74
$[K_{3}NaLiH_{23}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{6-}$	1030.71	1030.74
$[K_3NaLi_2H_{22}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1031.71	1031.74
$[K_3NaLi_3H_{21}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1032.71	1032.74
$[K_4LiH_{23}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1033.37	1033.40
$[K_4 Li_2 H_{22} Si_2 Ta_{24} (O_2)_{20} O_{52} (OH)_9]^{6-}$	1034.38	1034.40
$[K_4 Li_3 H_{21} Si_2 Ta_{24} (O_2)_{20} O_{52} (OH)_9]^{6-}$	1035.38	1035.40
$[K_4NaLiH_{22}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1037.04	1037.07
$[K_4NaLi_2H_{21}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1038.04	1038.06
$[K_4NaLi_3H_{20}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1039.04	1039.08
$[K_5LiH_{22}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1039.70	1039.73
$[K_5Li_2H_{21}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1040.70	1040.72
$[K_5Li_3H_{20}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1041.70	1041.73
$[K_5Li_4H_{19}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1042.70	1042.72
$[K_5NaLiH_{21}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1043.36	1043.39
$[K_5NaLi_2H_{20}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1044.37	1044.39
$[K_5NaLi_3H_{19}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{6-}$	1045.37	1045.39
$[K_6 Li_2 H_{20} Si_2 Ta_{24} (O_2)_{20} O_{52} (OH)_9]^{6-}$	1047.03	1047.06
$[Na_{2}H_{27}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{5-}$	1217.48	1217.42
$[K_{3}Na_{2}Li_{3}H_{21}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{5-}$	1244.26	1244.18
$[K_{3}Na_{2}Li_{4}H_{20}Si_{2}Ta_{24}(O_{2})_{20}O_{52}(OH)_{9}]^{5-}$	1245.46	1245.38
$[K_4NaLi_3H_{21}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{5-}$	1247.45	1247.37
$[K_4Na_2Li_4H_{19}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{5-}$	1253.05	1252.98
$[K_5 Li_6 H_{18} Si_2 Ta_{24} (O_2)_{20} O_{52} (OH)_9]^{5-}$	1254.25	1254.18
$[K_5NaLi_4H_{19}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{5-}$	1256.24	1256.17

$[K_5Na_3H_{21}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{5-}$	1259.76	1259.83
$[K_5NaLi_2H_{22}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1567.05	1567.10
$[K_6Li_2H_{22}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1571.05	1571.10
$[K_5Na_2Li_3H_{20}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1574.55	1574.59
$[K_5Na_2Li_4H_{19}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1576.05	1576.10
$[K_5Na_2Li_6H_{17}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1579.06	1579.08
$[K_5Na_2Li_8H_{15}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1582.06	1582.08
$[K_5Na_3Li_6H_{16}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1584.59	1584.10
$[K_5Na_5LiH_{19}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1587.53	1587.56
$[K_5Na_5Li_2H_{18}Si_2Ta_{24}(O_2)_{20}O_{52}(OH)_9]^{4-}$	1589.03	1589.04

Table S8. Data of proton conductivity σ (S·cm⁻¹) of **1** at various RH conditions under 25°C RH.

T (°C)	1
75	1.23×10^{-7}
80	1.44×10^{-5}
85	3.92×10^{-5}
90	6.54×10^{-5}
95	8.13×10 ⁻⁴

Table S9. Data of proton conductivity σ (S·cm⁻¹) of **1** at various temperature conditions under 95% RH.

T (°C)	1
25	8.13×10 ⁻⁴
35	1.11×10^{-3}
45	1.67×10^{-3}
55	2.61×10 ⁻³
65	3.21×10 ⁻³
75	3.63×10 ⁻³

Table S10. A comparison of the proton conductivity of **1** and all polyoxotantalates-based crystalline conducting materials.

POMs-based	crystalline	Proton	Relative	Temperature	Ea	Ref.
conducting materials		conductivity	Humidity	(°C)	(eV)	
		$(S \text{ cm}^{-1})$				
1		8.13×10^{-4}	95%	25	0.2	This
		3.63×10 ⁻³	95%	75	9	work
K ₁₂ Na ₁₄ H _{7.4} [Fe _{10.7} Ta _{1.}	₃ O ₈ (OH) ₈ (9.24×10 ⁻⁴	85%	25	0.5	69
$H_2O_2(Ta_6O_{19})_6]$ ·114.	5H ₂ O	2.61×10 ⁻²	85%	85	0	

$H[Co^{III}(en)_3]_3[Co^{III}(en)_2O](C_2O_4$	4.67×10^{-6}	98%	25	0.6 70
){ $(Ta_6O_{19})_2[Co^{II}(C_2O_4)(H_2O_2)]_2[$	1.10×10 ⁻³	98%	85	8
$Co^{III}(en)(H_2O)]_2$ · 41 H_2O				
$[Co^{III}(en)_3]_4C_2O_4\{Ta_6O_{19}[Co^{III}(e$	8.05×10^{-4}	98%	25	0.8 70
n)]} ₂ ·66H ₂ O	5.76×10 ⁻²	98%	85	5
$H_2[Cu(en)_2(H_2O)_2]{[Cu(en)_2]_4[}$	9.90×10 ⁻⁵	98%	25	0.5 71
$Cu(en)(Ta_6O_{19})]_2$ }14H ₂ O	1.04×10^{-2}	98%	75	6
$[Ni_2(H_2O)_{10}\{P_4Ta_6(O_2)_6O_{24}\}]^{6-}$	3.69×10 ⁻⁵	90%	25	0.3 58
	1.22×10 ⁻³	90%	85	9
$H_2[Co(en)_3]_3Ta_6O_{19}$	9.16×10 ⁻⁷	98%	25	0.4 72
	2.67×10 ⁻³	98%	85	2/1.
				828
$Na_{2}(H_{2}O)_{6}H_{2}[Co(en)_{3}]_{2}Ta_{6}O_{19}$	6.32×10 ⁻⁷	98%	25	0.6 72
	6.18×10 ⁻⁴	98%	85	6

Table S11. A comparison of the proton conductivity of 1 and some other recent representative

 POMs-based crystalline conducting materials.

POMs-based of	crystalline	Proton	Relative	Temperature	Ea	Ref.
conducting materials		conductivity	Humidity	(°C)	(eV)	
		$(S \text{ cm}^{-1})$				
1		8.13×10^{-4}	95%	25	0.29	This
		3.63×10 ⁻³	95%	95	-	work
$H_6[Cu(en)_2]_8[Ge_{12}O_6(Cee_{12}O_6(Ce_$	0H) ₈ Nb ₃₈	5.73×10 ⁻⁶	98%	25	0.60	73
O_{120}]·34H ₂ O		3.04×10 ⁻⁴	98%	85		-
$H_8[Cu(en)_2]_7[Ge_{12}O_8(Ce_{12}O_8)]$	0H) ₄ Nb ₃₈	8.92×10 ⁻⁶	98%	25	0.47	73
O ₁₂₀]·28H ₂ O		1.62×10 ⁻⁴	98%	85		-
Na ₁₆ H ₂₂ [(<i>B</i> -β-		1.12×10 ⁻³	55%	30	0.40	74
SbW ₉ O ₃₃) ₆ (W ₃ RuO ₇) ₂ ($W_4O_{11})]$	5.41×10 ⁻³	55%	60	-	
118H ₂ O						
$Na_{5.5}H_{6.5}[(SbW_9O_{33})_2]$	WO ₂ (OH	4.90×10 ⁻³	75%	25	0.31	75
)} ₂ {WO ₂ }RuC ₇ H ₃ NO ₄]·36H ₂ O	2.97×10^{-2}	75%	75		
$[Cu(en)_2(H_2O)]_2[Cu(en)_2($	1) ₂] ₁₀ H ₉₇ [1.19×10^{-4}	98%	25	0.54	76
$Dy_{10}Nb_{190}]^{7-}$		3.75×10 ⁻³	98%	85	-	
[(AsW ₉ O ₃₃) ₆ {W ₂ O ₅ (H ₂	2O)(_{DL} -	2.83×10 ⁻⁴	75%	65	0.54	77
Ala) $_{2}$ {W ₃ O ₆ (H ₂ O)(_{DL} ·	-					
Ala)} ₂ { $W_2O_5(DL-Ala)$ }]					
$[As_4 \overline{W_{48}O_{168}}]^{36-}$		1.30×10^{-3}	98%	25	0.26	78
		5.00×10 ⁻³	98%	75		
$[As_2W_{21}O_{77}(H_2O)_3]^{22-}$		8.20×10 ⁻⁵	98%	25	0.39	78

	6.40×10 ⁻⁴	98%	75		
$H_4[Cu(en)_2]_4\{K_4(H_2O)_2[Cu(en)_2$	4.68×10 ⁻⁶	98%	25	1.03	79
$]_{5}[Cu_{5}(trz)_{2}(en)_{4}(OH)_{2}][Dy_{2}Cu_{2}(en)_{4}(OH)_{2}]]$	3.42×10 ⁻³	98%	85		
$en)_2(CO_3)_3(H_2O)_2(OH)_3][Dy(H_2$					
O_{4} $D_{y}Nb_{23}$					
$O_{68}(H_2O)_{4]_2} = 60H_2O$ $H_{12}(L_2)_{2}(H_2O)_{2}(Zr_2(OH)_2)(P_2)$	6.94×10 ⁻⁴	08%	35	0.24	80
$W_{2}(\Omega_{2})$ 15H ₂ O	$\frac{0.94 \times 10}{2.12 \times 10^{-3}}$	9870	85	0.24	80
$W_{34}(2)$ $W_{34}(2)$ $W_{10}(100) = [7, (011) (P)]$	2.13^10 ⁻⁵	9870	85	0.29	80
$H\{Ce_4(L)_2(H_2O)_{21}[Zr_3(OH)_3(P + VO_1)_1]\}$	5.99×10 +	98%	35	0.28	80
W ₉ O ₃₄) ₂]} I3H ₂ O	2.35×10 ³	98%	85		
$H{Pr_4(L)_2(H_2O)_{21}[Zr_3(OH)_3(PW)]}$	1.78×10 ⁻³	98%	35	0.30	80
₉ O ₃₄) ₂]} 15H ₂ O	7.53×10 ⁻³	98%	85		
$\{[Co(en)_2(SO_3)][Te_4Nb_{24}O_{79}]\}^{20}$	8.13×10 ⁻⁵	75%	25	0.28	81
-	3.05×10 ⁻⁴	75%	60		
${[Cu(en)_2]_{10}[Nb_{68}O_{182}(OH)_8(H_2)]_{10}[Nb_{68}O_{18}O_{18}O_{18}O_{18}O_{18}O_{18}$	9.67×10 ⁻⁵	98%	25	0.53	82
$O)_{10}]\}^{12-}$	5.71×10 ⁻³	98%	75		
$[Co(H_2O)_6]_2 \{ [Co(H_2O)_4]_4 [WZn_3] \}$	7.61×10 ⁻⁶	98%	25	0.24	83
$(H_2O)_2(ZnW_9O_{34})_2]$	3.55×10 ⁻⁴	98%	85		
${[P_2W_{15}Nb_3O_{62}]_2(4PBA)_2((4PBA)_2)_2(4PBA)_2(4PAA)_2$	7.78×10 ⁻²	98%	90	0.66	84
A) ₂ O)} ¹⁶⁻					
${[W_{14}Ce^{IV}_{6}O_{61}]([W_{3}Bi_{6}Ce^{III}_{3}(H_{2}$	2.40×10^{-3}	90%	25	0.68	85
$O_{3}O_{14}][BiW_{9}O_{33}]_{3}_{2}^{34-}$	0.10.10.2	0.50/	2.5	0.00	
$\{[Na(NO_3)(H_2O)]_4[AI_{16}(OH)_{24}(H_2O)]_4[AI_{16}(OH)_{24}(H_2O)]_{16}\}$	9.10×10 ⁻³	85%	25	0.32	86
$H_2O_8(P_8W_{48}O_{184})]$	4.50×10 ⁻²	85%	85		
$[Na_{6}(H_{2}O)_{12}]_{4}[K_{42}Ge_{8}W_{72}O_{272}($	3.30×10 ⁻³	98%	30	0.52	87
H_2O_{60}] ¹⁴⁻	6.80×10 ⁻³	98%	80		
$[La_{27}Ge_{10}W_{106}O_{406}(OH)_4(H_2O)_{24}$	4.00×10 ⁻⁵	98%	30	0.42	88
]59-	1.50×10^{-2}	98%	85		
$[Ce^{III}(H_2O)_6]\{[Ce^{IV}_7Ce^{III}_3O_6(OH$	1.95×10^{-7}	75%	30	0.36	89
$_{6}(CO_{3})(H_{2}O)_{11}][(P_{2}W_{16}O_{59})]_{3}^{1}$	1.50×10^{-5}	75%	100		
6- 	<u> </u>				
$\{[Na(H_2O)_4]NaAs_2W_{22}(CH_3CO), O, D, D, Q, (CH_2O), Q, N, Q, (CH_2O), Q,$	6.43×10 ⁻⁵	80%	25	0.36	90
$O_{2}O_{76}Rn_{2}(N(CH_{3})_{2})_{2}$	3.23×10 ⁻⁴	80%	65		
$Cu_6(Trz)_{10}(H_2O)_4[H_2SiW_{12}O_{40}]$	5.40×10 ⁻⁸	95%	45	0.34	91
8H ₂ O	1.84×10 ⁻⁶	95%	95		
$[La_3(H_2O)_{22}][P_2W_{15}Ta_3O_{62}]$	3.24×10 ⁻⁴	98%	25	0.36	92
	1.26×10^{-2}	98%	95		
$[\{As^{III}{}_{5}O_{4}(OH)_{3}\}_{2}(P_{8}W_{48}O_{184})]^{32}$	1.20×10^{-3}	70%	35	0.61	93
_	1.20×10^{-2}	70%	85		

T (°C)	1
25	1.23×10 ⁻⁷
35	5.63×10 ⁻⁷
45	3.27×10 ⁻⁶
55	1.40×10^{-5}
65	3.42×10 ⁻⁵
75	8.31×10 ⁻⁵
85	1.26×10 ⁻⁴

Table S12. Data of proton conductivity σ (S·cm⁻¹) of 1 at various temperature conditions under 75% RH.

Table S13. Data of proton conductivity σ (S·cm⁻¹) of **1** at various temperature conditions under 80% RH.

T (°C)	1
25	1.44×10 ⁻⁵
35	3.70×10 ⁻⁵
45	5.43×10 ⁻⁵
55	8.43×10 ⁻⁵
65	1.23×10 ⁻⁴
75	1.74×10 ⁻⁴
85	2.40×10 ⁻⁴

Table S14. Data of proton conductivity σ (S·cm⁻¹) of 1 at various temperature conditions under 85% RH.

T (°C)	1
25	3.92×10 ⁻⁵
35	8.68×10 ⁻⁵
45	1.28×10^{-4}
55	1.83×10 ⁻⁴
65	2.83×10 ⁻⁴
75	3.80×10 ⁻⁴
85	5.00×10 ⁻⁴

Table S15. Data of proton conductivity σ (S·cm⁻¹) of 1 at various temperature conditions under 90% RH.

T (°C)	1
25	6.54×10 ⁻⁵
35	1.30×10^{-4}
45	2.03×10 ⁻⁴
55	3.04×10 ⁻⁴

65	3.86×10 ⁻⁴
75	4.77×10 ⁻⁴
85	6.36×10 ⁻⁴

 Table S16. Selected hydrogen bond distances for 1.

D–H···A	$d(D \cdots A)(A)$	D–H···A	$d(D \cdots A)(A)$
O(6W)–H…O54	2.9380(154)	O(31W)−H…O52	2.8121(148)
O(7W)–H···O31	2.7607(123)	O(33W)−H…O98	2.7395(248)
O(10W)−H…O52	2.7517(120)	O(38W)–H…O96	2.7596(156)
O(11W)−H…O8	2.7763(145)	O(40W)–H···O33	2.7893(182)
O(13W)−H…O55	2.8085(156)	O(43W)−H…O39	2.6880(178)
O(17W)−H…O74	2.7688(128)	O(46W)−H…O42	2.7690(177)
O(19W)–H…O91	2.6195(136)	O(47W)−H…O49	2.6908(198)
O(23W)−H…O48	2.7421(161)	O(54W)−H…O56	2.7981(254)
O(26W)−H···O71	2.8674(206)	O(58W)−H···O48	2.8489(360)
O(30W)–H···O47	2.7390(135)		

Atoms	BVS value	Atoms	BVS value	Atoms	BVS value
Tal	5.43	Ta10	5.13	Ta19	5.32
Ta2	5.39	Ta11	5.35	Ta20	5.01
Ta3	5.26	Ta12	5.39	Ta21	5.32
Ta4	5.40	Ta13	5.28	Ta22	5.29
Ta5	5.11	Ta14	5.32	Ta23	5.22
Ta6	5.27	Ta15	5.03	Ta24	5.34
Ta7	5.33	Ta16	5.33	Si1	3.90
Ta8	5.32	Ta17	5.31	Si2	3.97
Ta9	5.30	Ta18	5.32		

Table S17. BVS values for Ta and Si atoms in 1.

 Table S18. BVS values for O atoms in 1.

Atoms	BVS value	Atoms	BVS value	Atoms	BVS value
O100	0.78	O20	1.83	O61	1.71
O101	1.76	O22	1.09	O62	1.65
O102	1.07	O24	1.81	O63	0.81
O103	1.66	O26	1.81	O64	1.79
O104	1.72	O28	1.80	O65	1.66
O105	0.83	O29	1.73	O66	1.23
O106	1.72	O31	1.76	O67	1.67
O107	0.84	033	2.06	O68	0.83
O108	2.01	035	1.84	O69	1.75

O110	0.84	O36	1.79	070	1.59
0111	0.82	O37	1.08	071	0.84
O113	0.81	O38	1.79	072	0.81
0114	0.85	O39	2.05	073	1.68
O116	0.82	O40	1.64	075	0.85
O118	0.81	O41	1.83	O76	1.03
O120	1.68	O42	1.75	O78	0.81
O122	0.87	O43	1.83	O79	1.14
O123	0.81	O44	0.81	O80	1.64
O126	0.80	O45	1.84	O82	1.73
O128	0.84	O46	1.83	O83	1.76
0132	0.79	O47	1.70	O84	0.81
O133	0.81	O48	1.87	O85	1.75
0134	0.85	O49	1.79	O86	0.79
O135	0.82	O50	1.64	O88	1.12
O136	0.80	O51	0.83	O89	2.05
0137	0.86	052	1.14	O90	1.70
O140	0.84	O53	1.86	O91	0.84
O141	0.83	O54	1.09	O93	1.11
O146	0.87	055	1.81	O94	0.85
015	2.05	O56	1.82	O95	0.83
0152	0.89	057	1.83	O96	0.79
0155	0.84	O58	1.79	O97	0.87
016	1.78	O59	1.07	O98	1.72
O18	2.01	O60	0.88		

Table S19. Calculated and found analyses of Na, K, Li, Si, and Ta with massic ratios in 1.

	Na (%)	K (%)	Li (%)	Si (%)	Ta (%)
calcd	3.20	0.49	0.61	0.71	54.96
found	3.15	0.46	0.65	0.67	54.75

Fig. S1. The ball-and-stick representation of **1a**. Color code: sea blue and green spheres: Ta; lavender spheres: μ_4 -O spheres; red spheres: O; yellow spheres: Si.

Fig. S2. (a) The polyhedral/ball-and-stick representation of **1a**. (b) The ball-and-stick representation of **1a**. (c) The side view of **1a**. (d and e) The simplified diagram of **1a**. (Si, yellow; Ta, sea blue and green; O, red and lavender).

Fig. S3. The ball-and-stick representations of $\{cis-P_4Ta_6\}$ (a), $\{trans-P_4Ta_6\}$ (b), $\{Ln-As_4Ta_6\}$ (c), $\{Se_4Ta_6\}$ (d), $\{Ln-Se_4Ta_6\}$ (e), $\{Ni_2-P_4Ta_6\}$ (f), $\{Cd-P_4Ta_6\}$ and $\{Zn-P_4Ta_6\}$ (g). Color code: sea blue spheres: Ta; lavender spheres: μ_3 -O spheres; red spheres: O; yellow spheres: P, As, Se; green spheres: Ln, Ni, Cd, and Zn.

Fig. S4. The isosceles tetrahedron consists of Ta atoms in different positions. $(\angle Ta23Ta22Ta24=50.292^\circ,$ $\angle Ta21Ta22Ta24=58.762^\circ,$ $\angle Ta23Ta22Ta21=54.256^\circ, \angle Ta22Ta24Ta23=75.130^\circ,$ $\angle Ta21Ta24Ta23=63.172^\circ,$ $\angle Ta22Ta24Ta21=57.118^\circ, \angle Ta22Ta21Ta24=64.120^\circ,$ $\angle Ta23Ta21Ta24=58.106^\circ,$ $\angle Ta22Ta21Ta23=75.969^\circ, \angle Ta22Ta23Ta21=49.774^\circ,$ $\angle Ta21Ta23Ta24=58.723^\circ,$ $\angle Ta22Ta23Ta24=54.578^\circ.)$ $\angle Ta2Ta23Ta24=58.78^\circ.$

Fig. S5. The isosceles tetrahedron consists of Ta atoms in different positions. $(\angle Ta17Ta18Ta16=54.391^{\circ})$, $\angle Ta17Ta18Ta19=58.749^{\circ}$, $\angle Ta16Ta18Ta19=49.859^{\circ}$, $\angle Ta18Ta17Ta16=75.528^{\circ}$, $\angle Ta16Ta17Ta19=57.407^{\circ}$, $\angle Ta18Ta16Ta19=54.183^{\circ}$, $\angle Ta18Ta16Ta19=54.183^{\circ}$, $\angle Ta17Ta16Ta19=58.732^{\circ}$, $\angle Ta18Ta16Ta19=54.183^{\circ}$, $\angle Ta18Ta19Ta16=75.957^{\circ}$, $\angle Ta17Ta19Ta16=63.863^{\circ}$.) $\angle Ta17Ta19Ta16=63.863^{\circ}$.

Fig. S6. The isosceles tetrahedron consists of Ta atoms in different positions. $(\angle Ta12Ta14Ta11=62.472^\circ,$ $\angle Ta12Ta14Ta13=74.885^\circ,$ $\angle Ta11Ta14Ta13=57.727^\circ, \angle Ta14Ta12Ta11=59.226^\circ,$ $\angle Ta14Ta12Ta13=54.770^\circ,$ $\angle Ta11Ta12Ta13=50.648^\circ, \angle Ta12Ta11Ta14=58.302^\circ,$ $\angle Ta14Ta11Ta13=63.702^\circ,$ $\angle Ta12Ta11Ta13=75.700^\circ, \angle Ta14Ta13Ta11=58.570^\circ,$ $\angle Ta12Ta13Ta11=53.652^\circ,$ $\angle Ta14Ta13Ta12=50.345^\circ.)$ $\angle Ta12Ta13Ta11=53.652^\circ,$

Fig. S7. The packing arrangements of polyoxoanion 1a along the a(a), b(b) and c(c)-axis, respectively. And simplified 2D packing scheme for 1a along the a(d), b(e) and c(f)-axis, respectively.

Fig. S8. Polyhedral views of the 3D stacking for **1a** along the a(a), b(b) and c(c)-axis, respectively. And simplified 3D packing scheme for **1a** along the a(d), b(e) and c(f)-axis, respectively.

Fig. S9. ESI-MS spectra corresponding to the intact cluster of 1.

Fig. S10. Expanded region of the group of signals observed in the negative ESI mass spectrum of **1** illustrating the 6– charge state in a), 5– in b) and 4– in c).

Fig. S11. Nyquist plots for 1 under different RHs at 25 °C. The solid lines are the best fits.

Fig. S12. The equivalent circuit is used for fitting.

In the electrical equivalent circuit (see above), Rs is the ohmic resistance of the bulk/grain, Rp is

the charge transfer resistance at the grain boundary/electrode interface (two identical charge transfer resistances connected in series) and CPE1 is a constant phase element used for imperfect capacitors, Wo1 is inductance representing the effect of the external circuit.

Fig. S13. Fitted data of **1** under different temperatures at 95% RH. (a): 25°C; (b): 35°C, (c): 45°C; (d): 55°C; (e):65°C, and (f): 75°C.

Fig. S14. Nyquist plots for 1 under different temperatures at 75% RH. The solid lines are the best fits.

Fig. S15. Nyquist plots for 1 under different temperatures at 80% RH. The solid lines are the best fits.

Fig. S16. Nyquist plots for 1 under different temperatures at 85% RH. The solid lines are the best fits.

Fig. S17. Nyquist plots for 1 under different temperatures at 90% RH. The solid lines are the best fits.

Fig. S18. PXRD of 1 calculated (black), crystalline sample (red), and after the proton-conductive measurement (blue).

Fig. S19. Void analysis of 1.

Fig. S20. In situ IR spectra of 1 under different water vapor pressure.

Fig. S21. Schematic diagram of hydrogen bonding networks consisting of water molecules inside the pore channels.

Fig. S22. IR spectrum of 1.

Fig. S23. TG curve of 1.

References

- M. Filowitz, R. K. C. Ho, W. G. Klemperer and W. Shum, Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution, *Inorg. Chem.*, 1979, 18, 93–103.
- 2 Gilbert. Herve and Andre. Teze, Study of .alpha.- and .beta.-enneatungstosilicates and germanates, *Inorg. Chem.*, 1977, 16, 2115–2117.
- 3 G. M. Sheldrick, Crystal structure refinement with SHELXL, *Acta Crystallogr. Sect. C Struct. Chem.*, 2015, **71**, 3–8.

- 4 M. Nyman, F. Bonhomme, T. M. Alam, M. A. Rodriguez, B. R. Cherry, J. L. Krumhansl, T. M. Nenoff and A. M. Sattler, A General Synthetic Procedure for Heteropolyniobates, *Science*, 2002, 297, 996–998.
- 5 M. Nyman, F. Bonhomme, T. M. Alam, J. B. Parise and G. M. B. Vaughan, [SiNb₁₂O₄₀]¹⁶⁻ and [GeNb₁₂O₄₀]¹⁶⁻: Highly Charged Keggin Ions with Sticky Surfaces, *Angew. Chem. Int. Ed.*, 2004, 43, 2787–2792.
- 6 F. Bonhomme, J. P. Larentzos, T. M. Alam, E. J. Maginn and M. Nyman, Synthesis, Structural Characterization, and Molecular Modeling of Dodecaniobate Keggin Chain Materials, *Inorg. Chem.*, 2005, **44**, 1774–1785.
- 7 M. Nyman, A. J. Celestian, J. B. Parise, G. P. Holland and T. M. Alam, Solid-State Structural Characterization of a Rigid Framework of Lacunary Heteropolyniobates, *Inorg. Chem.*, 2006, 45, 1043–1052.
- 8 T. M. Anderson, S. G. Thoma, F. Bonhomme, M. A. Rodriguez, H. Park, J. B. Parise, T. M. Alam, J. P. Larentzos and M. Nyman, Lithium Polyniobates. A Lindqvist-Supported Lithium-Water Adamantane Cluster and Conversion of Hexaniobate to a Discrete Keggin Complex, *Cryst. Growth Des.*, 2007, 7, 719–723.
- 9 M. Nyman, J. P. Larentzos, E. J. Maginn, M. E. Welk, D. Ingersoll, H. Park, J. B. Parise, I. Bull and F. Bonhomme, Experimental and Theoretical Methods to Investigate Extraframework Species in a Layered Material of Dodecaniobate Anions, *Inorg. Chem.*, 2007, **46**, 2067–2079.
- 10 Z. Zhang, Q. Lin, D. Kurunthu, T. Wu, F. Zuo, S.-T. Zheng, C. J. Bardeen, X. Bu and P. Feng, Synthesis and Photocatalytic Properties of a New Heteropolyoxoniobate Compound: K₁₀[Nb₂O₂(H₂O)₂][SiNb₁₂O₄₀]·12H₂O, *J. Am. Chem. Soc.*, 2011, **133**, 6934–6937.
- 11 Y. Hou, M. Nyman and M. A. Rodriguez, Soluble Heteropolyniobates from the Bottom of Group IA, *Angew. Chem. Int. Ed.*, 2011, **50**, 12514–12517.
- 12 G. Guo, Y. Xu, J. Cao and C. Hu, An unprecedented vanadoniobate cluster with 'transvanadium' bicapped Keggin-type {VNb₁₂O₄₀(VO)₂}, *Chem. Commun.*, 2011, **47**, 9411–9413.
- 13 P. Huang, C. Qin, X.-L. Wang, C.-Y. Sun, G.-S. Yang, K.-Z. Shao, Y.-Q. Jiao, K. Zhou and Z.-M. Su, An unprecedented organic-inorganic hybrid based on the first {Nb₁₀V₄O₄₀(OH)₂}¹²⁻ clusters and copper cations, *Chem. Commun.*, 2012, **48**, 103–105.
- 14 Y. Hou, T. M. Alam, M. A. Rodriguez and M. Nyman, Aqueous compatibility of group IIIA monomers and Nb-polyoxoanions, *Chem. Commun.*, 2012, **48**, 6004–6006.
- 15 G. Guo, Y. Xu, J. Cao and C. Hu, The $\{V_4Nb_6O_{30}\}$ Cluster: A New Type of Vanadoniobate Anion Structure, *Chem. Eur. J.*, 2012, **18**, 3493–3497.
- 16 P. Huang, C. Qin, X.-L. Wang, C.-Y. Sun, Y. Xing, H.-N. Wang, K.-Z. Shao and Z.-M. Su, A new organic-inorganic hybrid based on the crescent-shaped polyoxoanion [H₆SiNb₁₈O₅₄]^{8–} and copper-organic cations, *Dalton Trans.*, 2012, **41**, 6075–6077.
- 17 J.-H. Son, C. A. Ohlin, R. L. Johnson, P. Yu and W. H. Casey, A Soluble Phosphorus-Centered Keggin Polyoxoniobate with Bicapping Vanadyl Groups, *Chem. Eur. J.*, 2013, **19**, 5191–5197.
- 18 J.-Q. Shen, S. Yao, Z.-M. Zhang, H.-H. Wu, T.-Z. Zhang and E.-B. Wang, Self-assembly and photocatalytic property of germanoniobate [H₆Ge₄Nb₁₆O₅₆]¹⁰⁻: encapsulating four {GeO₄} tetrahedra within a {Nb₁₆} cage, *Dalton Trans.*, 2013, **42**, 5812–5817.
- 19 X. Zhang, S. Liu, S. Li, Y. Gao, X. Wang, Q. Tang and Y. Liu, Two Members of the $\{X_4Nb_{16}O_{56}\}$ Family (X = Ge, Si) Based on $[(GeOH)_2Ge_2Nb_{16}H_2O_{54}]^{12-}$ and $[K(GeOH)_2Ge_2Nb_{16}H_3O_{54}]^{10-}$, *Eur. J. Inorg. Chem.*, 2013, **2013**, 1706–1712.

- 20 J. Son, C. A. Ohlin, E. C. Larson, P. Yu and W. H. Casey, Synthesis and Characterization of a Soluble Vanadium-Containing Keggin Polyoxoniobate by ESI-MS and ⁵¹V NMR: (TMA)₉[V₃Nb₁₂O₄₂]·18H₂O, *Eur. J. Inorg. Chem.*, 2013, **2013**, 1748–1753.
- 21 Y. Hou, L. N. Zakharov and M. Nyman, Observing Assembly of Complex Inorganic Materials from Polyoxometalate Building Blocks, *J. Am. Chem. Soc.*, 2013, **135**, 16651–16657.
- 22 J.-H. Son, J. Wang, F. E. Osterloh, P. Yu and W. H. Casey, A tellurium-substituted Lindqvisttype polyoxoniobate showing high H₂ evolution catalyzed by tellurium nanowires *via* photodecomposition, *Chem. Commun.*, 2014, **50**, 836–838.
- 23 J.-Q. Shen, Y. Zhang, Z.-M. Zhang, Y.-G. Li, Y.-Q. Gao and E.-B. Wang, Polyoxoniobatebased 3D framework materials with photocatalytic hydrogen evolution activity, *Chem. Commun.*, 2014, **50**, 6017–6019.
- 24 J. Shen, Q. Wu, Y. Zhang, Z. Zhang, Y. Li, Y. Lu and E. Wang, Unprecedented High-Nuclear Transition-Metal-Cluster-Substituted Heteropolyoxoniobates: Synthesis by {V₈} Ring Insertion into the POM Matrix and Antitumor Activities, *Chem. - Eur. J.*, 2014, **20**, 2840–2848.
- 25 Y. Zhang, J.-Q. Shen, L.-H. Zheng, Z.-M. Zhang, Y.-X. Li and E.-B. Wang, Four Polyoxonibate-Based Inorganic-Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity, *Cryst. Growth Des.*, 2014, **14**, 110–116.
- 26 J.-H. Son and W. H. Casey, Reversible capping/uncapping of phosphorous-centered Keggintype polyoxoniobate clusters, *Chem. Commun.*, 2015, **51**, 1436–1438.
- 27 J.-H. Son and W. H. Casey, A new Keggin-like niobium-phosphate cluster that reacts reversibly with hydrogen peroxide, *Chem. Commun.*, 2015, **51**, 12744–12747.
- 28 Q. Lan, Z.-M. Zhang, Y.-G. Li and E.-B. Wang, Extended structural materials composed of transition-metal-substituted arsenicniobates and their photocatalytic activity, *RSC Adv.*, 2015, 5, 44198–44203.
- 29 J.-F. Hu, T. Han, Y.-N. Chi, Z.-G. Lin, Y.-Q. Xu, S. Yang, D. Wei, Y.-Z. Zheng and C.-W. Hu, Sulfur-centred polyoxoniobate-based 3D organic-inorganic hybrid compound and its magnetic behavior, *Chem. Commun.*, 2016, **52**, 10846–10849.
- 30 P. A. Abramov, A. T. Davletgildeeva, N. K. Moroz, N. B. Kompankov, B. Santiago-Schübel and M. N. Sokolov, Cation-Dependent Self-assembly of Vanadium Polyoxoniobates, *Inorg. Chem.*, 2016, 55, 12807–12814.
- 31 N. Li, Y. Liu, Y. Lu, D. He, S. Liu, X. Wang, Y. Li and S. Liu, An arsenicniobate-based 3D framework with selective adsorption and anion-exchange properties, *New J. Chem.*, 2016, **40**, 2220–2224.
- 32 J. Dong, J. Hu, Y. Chi, Z. Lin, B. Zou, S. Yang, C. L. Hill and C. Hu, A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants, *Angew. Chem. Int. Ed.*, 2017, 56, 4473– 4477.
- 33 L. Jin, Z. Zhu, Y. Wu, Y. Qi, X. Li and S. Zheng, Record High-Nuclearity Polyoxoniobates: Discrete Nanoclusters {Nb₁₁₄}, {Nb₈₁}, and {Nb₅₂}, and Extended Frameworks Based on {Cu₃Nb₇₈} and {Cu₄Nb₇₈}, *Angew. Chem. Int. Ed.*, 2017, **56**, 16288–16292.
- 34 L. Li, K. Dong, P. Ma, C. Zhang, J. Niu and J. Wang, An {As₄Cu₄[Cu(H₂O)]₁₂} Cluster Incorporated within Four [Nb₇O₂₂]^{9–} Units, *Chem. - Eur. J.*, 2017, 23, 16957–16960.
- 35 Z. Liang, K. Wang, D. Zhang, P. Ma, J. Niu and J. Wang, {Fe₃Nb₂₅} cluster based on an Fecentred Keggin unit, *Dalton Trans.*, 2017, **46**, 1368–1371.

- 36 J. Hu, J. Dong, X. Huang, Y. Chi, Z. Lin, J. Li, S. Yang, H. Ma and C. Hu, Immobilization of Keggin polyoxovanadoniobate in crystalline solids to produce effective heterogeneous catalysts towards selective oxidation of benzyl-alkanes, *Dalton Trans.*, 2017, 46, 8245–8251.
- Z. Liang, J. Sun, D. Zhang, P. Ma, C. Zhang, J. Niu and J. Wang, Assembly of TeO₃^{2–} Ions Embedded in an Nb/O Cage with Selective Decolorization of Organic Dye, *Inorg. Chem.*, 2017, 56, 10119–10122.
- 38 B.-X. Liu, Z.-W. Cai, T. Yang, X.-X. Li, G.-Y. Yang and S.-T. Zheng, A rare polyoxometalate based on mixed niobium-based polyoxoanions [GeNb₁₈O₅₄]¹⁴⁻ and [Nb₃W₃O₁₉]⁵⁻, *Inorg. Chem. Commun.*, 2017, **78**, 56–60.
- 39 T.-T. Zhang, X. Zhang, Y. Lü, G.-D. Li, L.-N. Xiao, X.-B. Cui and J.-Q. Xu, New organicinorganic hybrid compounds based on [SiNb₁₂V₂O₄₂]¹²⁻ with high catalytic activity for styrene epoxidation, *Inorg. Chem. Front.*, 2017, 4, 1397–1404.
- 40 Z. Liang, L. Zhang, Y. Li, P. Ma, J. Niu and J. Wang, Two Novel Heteropolyniobates Using TeO₃²⁻ as Template and Linker, *Inorg. Chem.*, 2019, **58**, 27–30.
- 41 Y.-Y. Lin, J. Zhang, Z.-K. Zhu, Y.-Q. Sun, X.-X. Li and S.-T. Zheng, An ultrastable {SiNb18O54}-based hybrid polyoxoniobate framework for selective removal of crystal violet from aqueous solution and proton-conduction, *Inorg. Chem. Commun.*, 2020, **113**, 107766.
- 42 T.-T. Zhang, P.-H. Lin, G.-Y. Yu, X. Zhang and X.-B. Cui, Syntheses, characterization and properties of two new dodeca-niobates presenting unprecedented features, *Dalton Trans.*, 2020, 49, 6495–6503.
- 43 Z. Liang, Y. He, Y. Qiao, P. Ma, J. Niu and J. Wang, Sandwich-Type Heteropolyniobate Templated by Mixed Heteroanions, *Inorg. Chem.*, 2020, **59**, 7895–7899.
- 44 Y.-L. Wu, Y.-Q. Sun, X.-X. Li and S.-T. Zheng, A new dimeric isopolyoxoniobate {β-H₄Nb₅₂O₁₅₀} decorated with copper(II)-ethylenediamine for hydrolytic decomposition of chemical warfare agent simulant DMMP, *Inorg. Chem. Commun.*, 2020, **113**, 107815.
- 45 Z. Liang, J. Yu, Y. Zhang, P. Ma, Q. Mao and J. Wang, A lacunary heteropolyniobate linked by $[Co(H_2O)_6]^{2+}$ ions, *Inorg. Chem. Commun.*, 2020, **111**, 107612.
- 46 Z. Yang, J. Shang, Y. He, Y. Qiao, P. Ma, J. Niu and J. Wang, A 1D Helical Chain Heterpolyniobate Templated by AsO₃³⁻, *Inorg. Chem.*, 2020, **59**, 1967–1972.
- 47 Z. Liang, Y. Qiao, X. Li, P. Ma, J. Niu and J. Wang, A large copper-niobate cluster with the pagoda-shaped subunit {Nb₂₀O₅₉}, *Chem. Commun.*, 2021, **57**, 3999–4002.
- 48 Z. Yang, J. Shang, Y. Yang, P. Ma, J. Niu and J. Wang, Synthesis, structures and stability of three V-substituted polyoxoniobate clusters based on [TeNb₉O₃₃]¹⁷⁻ units, *Dalton Trans.*, 2021, 50, 7610–7620.
- 49 Y. Wu, Z. Zhong, P. Wu, Y. Sun, X. Li and S. Zheng, A Peanut-Like Sb-Embedded Polyoxoniobate Cage for Hydrolytic Decomposition of Chemical Warfare Agent, *Eur. J. Inorg. Chem.*, 2021, **2021**, 1505–1509.
- 50 P.-X. Wu, R.-D. Lai, R. Ge, C. Sun, G.-Q. Wang, X.-X. Li and S.-T. Zheng, A Tellurium-Substituted Heteropolyniobate with Unique π - π Stacking and Ionic Conduction Property, *Inorg. Chem.*, 2021, **60**, 6162–6166.
- 51 N. Shi, Y.-J. Wang, X.-X. Li, Y.-Q. Sun and S.-T. Zheng, An inorganic Co-containing heteropolyoxoniobate: reversible chemochromism and H₂O-dependent proton conductivity properties, *Inorg. Chem. Front.*, 2021, **8**, 5225–5233.
- 52 Z.-H. Zhong, J.-X. Jing, Y.-Q. Sun, X.-X. Li and S.-T. Zheng, Two new 3D tubular

polyoxoniobates frameworks based on {SiNb₁₈O₅₄} clusters with proton conduction properties, *Inorg. Chem. Commun.*, 2021, **132**, 108813.

- 53 R.-D. Lai, H.-L. Feng, Y.-Q. Sun, X.-X. Li and S.-T. Zheng, A lanthanide-tellurium heterometal encapsulated sandwich-type heteropolyoxoniobate with a 3D pcu-type hydrogenbonded network, *Dalton Trans.*, 2022, **51**, 10571–10577.
- 54 J. Son and W. H. Casey, Titanium-Substituted Polyoxotantalate Clusters Exhibiting Wide pH Stabilities: $[Ti_2Ta_8O_{28}]^{8-}$ and $[Ti_{12}Ta_6O_{44}]^{10-}$, *Chem. Eur. J.*, 2016, **22**, 14155–14157.
- 55 D. Zhang, Z. Liang, S. Liu, L. Li, P. Ma, S. Zhao, H. Wang, J. Wang and J. Niu, Discovery of Heteropolytantalate: Synthesis and Structure of Two 6-Peroxotantalo-4-phosphate Clusters, *Inorg. Chem.*, 2017, 56, 5537–5543.
- 56 Z. Liang, H. Wu, V. Singh, Y. Qiao, M. Li, P. Ma, J. Niu and J. Wang, Assembly of Lanthanide-Containing Polyoxotantalate Clusters with Efficient Photoluminescence Properties, *Inorg. Chem.*, 2019, 58, 13030–13036.
- 57 H. Wang, J. Sun, Y. Ma, C. Li, N. Li, P. Ma, D. Zhang, G. Wang, J. Wang and J. Niu, Discovery of the selenotantalate building block and its lanthanide derivatives: design, synthesis, and RhB decolorization properties, *Dalton Trans.*, 2020, **49**, 4078–4083.
- 58 X. Li, H. Zhao, Y. Li, Y. Yang, M. Zhang, S. Liu, P. Ma, J. Wang and J. Niu, Synthesis, structure and properties of three novel transition-metal-containing tantalum-phosphate clusters, *Chin. Chem. Lett.*, 2022, 33, 4675–4678.
- 59 Y. Guan, H.-B. Chen, R. Ge, Q.-X. Zeng, P.-W. Cai, C. Sun, Y.-Q. Sun, X.-X. Li and S.-T. Zheng, Development of a New Heteropolyoxotantalate Cluster for Multidimensional Polyoxotantalate Materials, *Inorg. Chem.*, 2023, **62**, 10044–10048.
- 60 D. A. Judd, Q. Chen, C. F. Campana and C. L. Hill, Synthesis, Solution and Solid State Structures, and Aqueous Chemistry of an Unstable Polyperoxo Polyoxometalate: [P₂W₁₂(NbO₂)₆O₅₆]¹²⁻, *J. Am. Chem. Soc.*, 1997, **119**, 5461–5462.
- 61 S.-J. Li, S.-X. Liu, C.-C. Li, F.-J. Ma, D.-D. Liang, W. Zhang, R.-K. Tan, Y.-Y. Zhang and L. Xu, Reactivity of Polyoxoniobates in Acidic Solution: Controllable Assembly and Disassembly Based on Niobium-Substituted Germanotungstates, *Chem. Eur. J.*, 2010, **16**, 13435–13442.
- 62 S.-J. Li, S.-X. Liu, C.-C. Li, F.-J. Ma, W. Zhang, D.-D. Liang, R.-K. Tan, Y.-Y. Zhang and Q. Tang, Niobium-substituted arsenotungstates: Controllable transformation between monomers and tetramer, *Inorg. Chim. Acta.*, 2011, **376**, 296–301.
- 63 M. Carraro, N. Nsouli, H. Oelrich, A. Sartorel, A. Sorarù, S. S. Mal, G. Scorrano, L. Walder, U. Kortz and M. Bonchio, Reactive Zr^{IV} and Hf^{IV} Butterfly Peroxides on Polyoxometalate Surfaces: Bridging the Gap between Homogeneous and Heterogeneous Catalysis, *Chem. Eur. J.*, 2011, **17**, 8371–8378.
- 64 P. Miró, J. Ling, J. Qiu, P. C. Burns, L. Gagliardi and C. J. Cramer, Experimental and Computational Study of a New Wheel-Shaped {[W₅O₂₁]₃[(U^{VI}O₂)₂(μ-O₂)]₃}^{30–} Polyoxometalate, *Inorg. Chem.*, 2012, **51**, 8784–8790.
- 65 S. Li, S. Liu, S. Liu, Y. Liu, Q. Tang, Z. Shi, S. Ouyang and J. Ye, {Ta₁₂}/{Ta₁₆} Cluster-Containing Polytantalotungstates with Remarkable Photocatalytic H₂ Evolution Activity, *J. Am. Chem. Soc.*, 2012, **134**, 19716–19721.
- 66 Y. Ren, Y. Hu, Y. Shan, Z. Kong, M. Gu, B. Yue and H. He, A mixed-addenda Nb/W polyoxometalate containing dimeric Dawson subunit: Synthesis, structure, and characterization, *Inorg. Chem. Commun.*, 2014, **40**, 108–111.

- 67 H. M. Qasim, W. W. Ayass, P. Donfack, A. S. Mougharbel, S. Bhattacharya, T. Nisar, T. Balster, A. Solé-Daura, I. Römer, J. Goura, A. Materny, V. Wagner, J. M. Poblet, B. S. Bassil and U. Kortz, Peroxo-Cerium(IV)-Containing Polyoxometalates: [Ce^{IV}₆(O₂)₉(GeW₁₀O₃₇)₃]²⁴⁻, a Recyclable Homogeneous Oxidation Catalyst, *Inorg. Chem.*, 2019, **58**, 11300–11307.
- 68 W. Du, Y. Liu, J. Sun, H. Wang, G. Yang and D. Zhang, Three rare-earth incorporating 6peroxotantalo-4-selenates and catalytic activities for imidation reaction, *Dalton Trans.*, 2022, **51**, 9988–9993.
- 69 H. Chen, M. Zhang, Y. Li, P. Ma, J. Wang and J. Niu, Chem. Commun., 2023, 59, 10664–10667.
- 70 Y. Yu, R.-D. Lai, C. Sun, Y.-Q. Sun, Q.-X. Zeng, X.-X. Li and S.-T. Zheng, Oxalate-assisted assembly of two polyoxotantalate supramolecular frameworks with proton conduction properties, *Chem. Commun.*, 2023, **59**, 3735–3738.
- 71 Z. Li, J. Zhang, L.-D. Lin, J.-H. Liu, X.-X. Li and S.-T. Zheng, Inorganic-organic hybrid highdimensional polyoxotantalates and their structural transformations triggered by water, *Chem. Commun.*, 2019, 55, 11735–11738.
- 72 Y.-L. Wang, Y.-L. Wu, Q.-X. Zeng, X.-X. Li and S.-T. Zheng, Two new inorganic-organic hybrid polyoxotantalates with proton conduction property, *J. Solid State Chem.*, 2023, **322**, 123943.
- Y.-J. Wang, L. Yu, X.-X. Li, Y.-Q. Sun and S.-T. Zheng, Two Unprecedented Germanoniobate Frameworks Based on High-Nuclearity Peanut-Shaped {Ge₁₂Nb₃₈} Clusters, *Inorg. Chem.*, 2024, 63, 1388–1394.
- 74 Y. Sun, H. Li, Y. Zou, P. Ma, J. Niu and J. Wang, A Hexameric Ruthenium(III)-Containing Tungstoantimonate with Good Proton Conductivity Performance, *Inorg. Chem.*, 2023, **62**, 14142– 14146.
- 75 M. Yang, H. Li, Y. Zhang, S. Ji, W. Chen, P. Ma, J. Wang and J. Niu, Organic Hybrid Antimoniotungstate Layered Ionic Crystal: Synthesis, Structure, and Interlayer-Confined Proton Conduction, *Inorg. Chem.*, 2023, **62**, 6467–6473.
- 76 R.-D. Lai, J. Zhang, X.-X. Li, S.-T. Zheng and G.-Y. Yang, Assemblies of Increasingly Large Ln-Containing Polyoxoniobates and Intermolecular Aggregation-Disaggregation Interconversions, J. Am. Chem. Soc., 2022, 144, 19603–19610.
- 77 K. Zheng, D. Yang, B. Niu, Y. Ye, P. Ma, J. Wang and J. Niu, _{DL}-Alanine Covalently Bonded Giant Arsenotungstate with Rapid Photochromic and Decent Proton Conduction Properties, *Inorg. Chem.*, 2022, **61**, 2022–20226.
- H. Chen, K. Zheng, J. Wang, B. Niu, P. Ma, J. Wang and J. Niu, Discovery and Isolation of Two Arsenotungastate Species: [As₄W₄₈O₁₆₈]³⁶⁻ and [As₂W₂₁O₇₇(H₂O)₃]²²⁻, *Inorg. Chem.*, 2023, 62, 3338–3342.
- 79 R.-D. Lai, Z.-K. Zhu, Y. Wu, Y.-Q. Sun, C. Sun, X.-X. Li and S.-T. Zheng, Proton-Conductive Polyoxometalate Architectures Constructed from Lanthanide-Incorporated Polyoxoniobate Cages, *Inorg. Chem.*, 2022, **61**, 21047–21054.
- 80 Y.-H. Fan, M. Du, Y.-X. Li, W.-J. Zhu, J.-Y. Pang, Y. Bai and D.-B. Dang, Construction of Water-Stable Rare-Earth Organic Frameworks with Ambient High Proton Conductivity Based on Zirconium Sandwiched Heteropolytungstate, *Inorg. Chem.*, 2022, **61**, 13829–13835.
- 81 Z. Jing, W. Wang, R. Wan, X. Ma, Y. Qiao, Y. Bai, P. Ma, J. Niu and J. Wang, Rocket-Shaped Telluroniobate with Efficient Catalytic Activity in the Transesterification Reaction, *Inorg. Chem.*, 2022, **61**, 16528–16532.

- 82 Y.-D. Lin, Z.-K. Zhu, R. Ge, H. Yu, Z. Li, C. Sun, Y.-Q. Sun, X.-X. Li and S.-T. Zheng, Proton conductive polyoxoniobate frameworks constructed from nanoscale {Nb₆₈O₂₀₀} cages, *Chem. Commun.*, 2021, **57**, 4702–4705.
- 83 C. Si, P. Ma, Q. Han, J. Jiao, W. Du, J. Wu, M. Li and J. Niu, A Polyoxometalate-Based Inorganic Porous Material with both Proton and Electron Conductivity by Light Actuation: Photocatalysis for Baeyer-Villiger Oxidation and Cr(VI) Reduction, *Inorg. Chem.*, 2021, 60, 682– 691.
- 84 S. Li, Y. Zhao, S. Knoll, R. Liu, G. Li, Q. Peng, P. Qiu, D. He, C. Streb and X. Chen, High Proton-Conductivity in Covalently Linked Polyoxometalate-Organoboronic Acid-Polymers, *Angew. Chem. Int. Ed.*, 2021, **60**, 16953–16957.
- 85 J. Liu, Q. Han, L. Chen, J. Zhao, C. Streb and Y. Song, Aggregation of Giant Cerium-Bismuth Tungstate Clusters into a 3D Porous Framework with High Proton Conductivity, *Angew. Chem. Int. Ed.*, 2018, 57, 8416–8420.
- 86 P. Yang, M. Alsufyani, A. Emwas, C. Chen and N. M. Khashab, Lewis Acid Guests in a {P₈W₄₈} Archetypal Polyoxotungstate Host: Enhanced Proton Conductivity via Metal-Oxo Cluster within Cluster Assemblies, *Angew. Chem. Int. Ed.*, 2018, **57**, 13046–13051.
- 87 Z. Li, L.-D. Lin, H. Yu, X.-X. Li and S.-T. Zheng, All-Inorganic Ionic Porous Material Based on Giant Spherical Polyoxometalates Containing Core-Shell K₆@K₃₆-Water Cage, *Angew. Chem. Int. Ed.*, 2018, **57**, 15777–15781.
- 88 Z. Li, X.-X. Li, T. Yang, Z.-W. Cai and S.-T. Zheng, Four-Shell Polyoxometalates Featuring High-Nuclearity Ln26 Clusters: Structural Transformations of Nanoclusters into Frameworks Triggered by Transition-Metal Ions, *Angew. Chem. Int. Ed.*, 2017, 56, 2664–2669.
- 89 P. Ma, R. Wan, Y. Wang, F. Hu, D. Zhang, J. Niu and J. Wang, Coordination-Driven Self-Assembly of a 2D Graphite-Like Framework Constructed from High-Nuclear Ce₁₀ Cluster Encapsulated Polyoxotungstates, *Inorg. Chem.*, 2016, 55, 918–924.
- 90 Z. Liu, X. Zhang, R. Wan, H. Li, Y. Hong, P. Ma, J. Niu and J. Wang, A Rh-substituted polyoxometalate with an acetate-modified building block {As₂W₂₂O₇₆(CH₃COO)₂}, *Chem. Commun.*, 2021, **57**, 10250–10253.
- 91 E.-L. Zhou, C. Qin, P. Huang, X.-L. Wang, W.-C. Chen, K.-Z. Shao and Z.-M. Su, A Stable Polyoxometalate-Pillared Metal-Organic Framework for Proton-Conducting and Colorimetric Biosensing, *Chem. - Eur. J.*, 2015, **21**, 11894–11898.
- 92 Q. Peng, S. Li, R. Wang, S. Liu, L. Xie, J. Zhai, J. Zhang, Q. Zhao and X. Chen, Lanthanide derivatives of Ta/W mixed-addendum POMs as proton-conducting materials, *Dalton Trans.*, 2017, 46, 4157–4160.
- 93 S. Chand, S. C. Pal, A. Pal, Y. Ye, Q. Lin, Z. Zhang, S. Xiang and M. C. Das, Metalo Hydrogen-Bonded Organic Frameworks (MHOFs) as New Class of Crystalline Materials for Protonic Conduction, *Chem. - Eur. J.*, 2019, 25, 1691–1695.