Supporting Information

Rapid room-temperature H₂S detection based on Bi₂S₃/CuO heterostructures: the synergy of increased surface-adsorbed oxygen and heterojunction effect

Chengcheng Hu^a, Meiling Yu^a, Zhenze Zhou^a, ChenDa Wei^a, You Wang^{a,b*} and Juanyuan Hao^{a,b*}

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China. Email: jyhao@hit.edu.cn and y-wang@hit.edu.cn.

^bKey Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, P.R. China.

Experimental section

Materials

Anhydrous ethanol (CH₃COOH), Anhydrous bismuth nitrate (Bi(NO₃)₃·5H₂O) and Copper acetate (Cu(CH₃COO)₂) was purchased from China National Pharmaceutical Group Chemical Reagent Co., Ltd. sodium sulfide nonahydrate (Na₂S·9H₂O, purity≥99.0%) was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Ethylene glycol was purchased from Tianjin Fuyu Fine Chemical Co., Ltd. All precursors were of analytical grade and used without further purification.

Fig. S1 Schematic diagram of the Ag-Pd interdigital electrode.

Fig. S2 Schematic diagram of the sensor measurement.

Fig. S3 SEM images of (a) pristine Bi₂S₃ nanorods, (b) Bi₂S₃/CuO-1 heterostructures, and (c) Bi₂S₃/CuO-3 heterostructures.

Fig. S4 The baseline curves of devices based on Bi_2S_3 /CuO-2, Bi_2S_3

Fig. S5 Dynamic resistance curve of the ${\rm Bi_2S_3/CuO\text{-}2}$ sensor to 25-1000 ppb ${\rm H_2S}$

Fig. S6 Comparison of response curves to 1 ppm $\rm H_2S$ on 1^{st} and 30^{th} day.

Fig. S7 The sensing response of $Bi_2S_3/CuO-2$ to 1 ppm H_2S in different test condition: Air and N_2 as the background gases

Fig. S8 Work functions of $\mathrm{Bi}_2\mathrm{S}_3$ and CuO measured by KPFM

Fig. S9 O1s high-resolution XPS spectra of $Bi_2S_3/CuO-2$, Bi_2S_3 and CuO

Table S1 Comparison of response and recovery time of Bi₂S₃/CuO-2 sensor to 1 ppm H₂S on 1st and 30th day.

	1 th	30 th
Response time (s)	7.5	57.2
Recovery time (s)	620.6	626.3

Tał	ole.	S2	T	he	proj	or	tion	of	var	ious	ty	pes	of	oxy	/gen	in	B	i_2	S ₃ /	Cu(D- 2	2, (Cu(Э,	Bi_2	S_3
-----	------	----	---	----	------	----	------	----	-----	------	----	-----	----	-----	------	----	---	-------	------------------	-----	-------------	------	-----	----	--------	-------

Sample	O _C	O _V	O _L
CuO	15.01%	54.41%	33.58%
Bi ₂ S ₃ /CuO-2	33.06%	42.32%	24.62%
Bi_2S_3	100%	—	—