Tunable SIM properties in a family of 3D anilato-

based Lanthanide-MOFs

Noemi Monni,^{a,b} Sourav Dey,^a Víctor García-López,^a Mariangela Oggianu,^b José J. Baldoví,^a

Maria Laura Mercuri,^{b*} Miguel Clemente-León,^{a*} and Eugenio Coronado^a

^a Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2,

46980 Paterna, Spain

^b Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso

Universitario di Monserrato, 09042 Monserrato, Italy

Table of	Contents	
1. Eler	mental Analysis	3
1.1	Table S1. Elemental analysis	3
1. Cry	stal Structure	4
1.1	Table S2. Crystallographic data for compounds 1-3a.	4
1.2	Table S3. Crystallographic data for compounds 1-3b	5
1.3	Table S4 Selected bond lengths and angles for $[Dy_2(trz_2An)_3(H_2O)_4]_n 10H_2O$ (1a)	6
1.4	Table S5 Selected bond lengths and angles for $[Tb_2(trz_2An)_3(H_2O)_4]_n 10H_2O$ (2a)	7
1.5	Table S6. Selected bond lengths and angles for [Ho ₂ (trz ₂ An) ₃ (H ₂ O) ₄] _n 10H ₂ O (3a)	7
1.6	Table S7. Selected bond lengths and angles for [Dy ₂ (trz ₂ An) ₃ (H ₂ O) ₄] _n 7H ₂ O (1b)	8
1.7	Table S8 . Selected bond lengths and angles for $[Tb_2(trz_2An)_3(H_2O)_4]_n$ 7H ₂ O (2b)	9
1.8	Table S9. Selected bond lengths and angles for [Ho ₂ (trz ₂ An) ₃ (H ₂ O) ₄] _n ·7H ₂ O (3b)	9
1.9	Figure S1. Experimental and calculated PXRD1	0
2. FT-	IR Spectroscopy1	1
2.1	Figure S2. FT-IR spectra of H2trz2An 1	.1
2.2	Table S10. Assignments of characteristic bands for 1a and 1b 1	.1
2.3	Figure S3. FT-IR spectra1	2
2.4	Figure S4. FT-IR spectra1	2
3. Mag	gnetic Properties and Theoretical Calculations1	3

3.1	Table S11. The CASSCF/RASSI-SO/SINGLE_ANISO	13
3.2	Figure S5. A comparison of experimental and computed temperature dependent	
magne	tization of 1a	13
3.3	Table S12. The CASSCF/RASSI-SO/SINGLE_ANISO for 1a_des	13
3.4	Figure S6. The anisotropy axis of KD1 of 1a_des.	14
3.5	Table S13. The CASSCF/RASSI-SO/SINGLE_ANISO computed energy and g tenso 14	ors
3.6	Figure S7. The anisotropy axis of KD1 and the energy vs magnetic moment for 1b	15
3.7	Figure S8. Loprop charge model of 1a, 1a_des and 1b	15
3.8 1b	Table S14. The CASSCF computed Loprop charges metal and atoms 1a, 1a_des and	15
3.9	Table S15. The computed crystal field parameters 1a, 1a_des and 1b	16
3.10 energy	Table S16. The CASSCF/RASSI-SO/SINGLE_ANISO computed energy computed for 2a, 2a-des and 2b.	17
3.11	Table S17. The CASSCF/RASSI-SO/SINGLE ANISO computed g _{zz} and m _J	
compo	sition for 2a, 2a-des and 2b	17
3.12 relaxat	Figure S9. The anisotropy axis of KD1 and the mechanism of magnetization ion of 2a	17
3.13 relaxat	Figure S10 . The anisotropy axis of KD1 and he mechanism of magnetization ion of 2a_des.	18
3.14	Figure S11. The anisotropy axis of KD1 of 2b	19
3.15	Figure S12. Loprop charge model of 2a	19
3.16	Table S18. The CASSCF computed Loprop charges metal of 2a, 2a_des and 2b	19
3.17	Table S19. The computed crystal field parameters 2a, 2a_des and 2b	19
3.18	Figure S13. The anisotropy axis of KD1 of 3a	21
3.19	Table S20. The CASSCF/RASSI-SO/SINGLE_ANISO computed energy	21
3.20	Table S21. The CASSCF/RASSI-SO/SINGLE_ANISO computed gzz and mJ	
compo	sition of first two pKDs	22
3.21	Figure S14. The anisotropy axis of KD1 of 3a_des	22
3.22	Figure S15. The anisotropy axis of KD1 of 3b.	23
3.23	Figure S16. Loprop charge model of 3a, 3a_des and 3b	23
3.24	Table S22. The CASSCF computed Loprop charges metal of 3a, 3a_des and 3b	23
3.25	Table S23. The computed crystal field parameters for 3a, 3a_des and 3b	23
3.26	Figure S17. Magnetization (M) versus field (H) of 1a	25
3.27	Figure S18. Magnetization (M) versus field (H) of 1a_des	26
3.28	Figure S19. Magnetization (M) versus field (H) of 1b	26
3.29	Figure S20. Magnetization (M) versus field (H) of 2a	27
3.30	Figure S21. Magnetization (M) versus field (H) of 2a_des	28
3.31	Figure S22. Magnetization (M) versus field (H) of 2b	29
3.32	Figure S23. Magnetization (M) versus field (H) of 3a	29

3.33	Figure S24. Magnetization (M) versus field (H) of 3a_des	
3.34	Figure S25. Magnetization (M) versus field (H) of 3b	31
3.35	Figure S26. Temperature dependence of χ '	32
3.36	Figure S27. Plot of Ln τ versus T-1	
3.37	Figure S28. Thermal dependence of the relaxation time of 1a_des	
3.38	Figure S29. Cole-Cole plots	
3.39	Figure S30. AC susceptibility in an applied dc field of 0.1 T of 1a_des	
3.40	Figure S31. AC susceptibility in an applied dc field of 0.1 T of 1b	
3.41	Figure S32. AC susceptibility in an applied dc field of 0.1 T 2b	

1. Elemental Analysis

1.1 Table S1. Elemental analysis for all the compounds **1-3a** and **1-3b**.

		Calculated				Found	
		%C	%Н	%N	%C	%Н	%N
1a	$C_{30}H_{40}N_{18}O_{26}Dy_2$	25.85	2.89	18.09	25.39	2.80	18.12
1b	$C_{30}H_{34}N_{18}O_{23}Dy_2 \\$	26.90	2.56	18.81	26.54	2.36	17.47
2a	$C_{30}H_{40}N_{18}O_{26}Tb_2$	25.99	2.91	18.18	25.85	2.75	18.23
2b	$C_{30}H_{34}N_{18}O_{23}Tb_2$	27.04	2.57	18.92	25.52	2.27	19.41
3 a	$C_{30}H_{40}N_{18}O_{26}Ho_2$	25.76	2.88	18.03	25.79	2.67	18.10
3b	C ₃₀ H ₃₄ N ₁₈ O ₂₃ Ho ₂	26.80	2.55	18.75	26.93	2.33	19.11

1. Crystal Structure

1.1 Table S2. Crystallographic data for compounds 1-3a.

	1 a	2a	3a
Empirical formula	C30H38N18O25Dy2	C30H38N18O25Tb2	C ₃₀ H ₃₈ N ₁₈ O ₂₅ Ho ₂
FW	1365.65	1358.50	1370.51
Crystal color	Dark Red	Dark Red	Dark Red
Crystal size (mm ³)	$0.22\times0.16\times0.13$	$0.17 \times 0.14 \times 0.11$	$0.2\times0.16\times0.08$
Temperature (K)	120	120	120
Wavelength (Å)	(MoKa) $\lambda = 0.71073$	(MoKa) λ = 0.71073	(MoKa) $\lambda = 0.71073$
Crystal system	triclinic	triclinic	Triclinic
Space group	P-1	P-1	P-1
a (Å)	8.9737 (4)	8.9903(4)	8.9571 (3)
b (Å)	9.4011 (4)	9.4164(4)	9.4084 (3)
c (Å)	15.5290 (6)	15.5861(6)	15.4980 (4)
α (°)	75.273 (4)	75.214(3)	75.173 (2)
β (°)	77.475 (4)	77.435(4)	77.349 (2)
γ (°)	68.042 (4)	68.017(4)	67.977 (3)
V (Å ³)	1164.23 (9)	1172.01(9)	1159.35 (7)
ρ_{calc} (g.cm ⁻³)	1.962	1.939	1.977
μ (MoK α) (mm ⁻¹)	3.293	3.100	3.496
2θ range (°)	6.516 to 56.212	6.514 to 55.868	6.626 to 54.962
Index ranges	$\textbf{-11} \le h \le \textbf{11}, \textbf{-12} \le k \le$	$-11 \le h \le 11, -12 \le$	$-10 \le h \le 11, -11 \le$
	$11, -20 \le l \le 19$	$\begin{array}{c} k \leq 11, -18 \\ \leq l \leq 20 \end{array}$	$k \le 12, -20 \le l \le 19$
Reflections collected	17487	15479	16014
Independent reflections	4931 [$R_{int} = 0.0259$,	4908 [R _{int} =	$4772 [R_{int} =$
	$R_{sigma} = 0.0264$]	0.0406,	$0.0238, R_{sigma} =$
		$R_{sigma} = 0.0517$	0.0218]
Data/restraints/paramet ers	4931/0/359	4908/0/384	4772/0/359
Goodness-of-fit on F2	1.070	1.054	1.033
Final R indexes [I>=2o	$R_1 = 0.0199$	$R_1 = 0.0290,$	$R_1 = 0.0184$
(I)]	$wR_2 = 0.0451$	$wR_2 = 0.0562$	$wR_2 = 0.0457$
Final R indexes [all	$R_1 = 0.0213$	$R_1 = 0.0355,$	$R_1 = 0.0189$
data]	$wR_2 = 0.0459$	$wR_2 = 0.0602$	$wR_2 = 0.0461$
Largest diff.peak/hole/e Å ⁻³	0.90/-0.83	1.01/-0.80	0.80/-0.80

	1b	2b	3b
Empirical formula	$C_{30}H_{28}N_{18}O_{20}Dy_2$	$C_{30}H_{28}N_{18}O_{20}Tb_2$	C ₃₀ H ₂₈ N ₁₈ O ₂₀ Ho ₂
FW	1285.65	1278.50	1290.51
Crystal color	Orange	Orange	Orange
Crystal size (mm ³)	$0.14 \times 0.09 \times 0.08$	$0.16 \times 0.14 \times 0.07$	$0.29 \times 0.13 \times 0.09$
Temperature (K)	120	120	120
Wavelength (Å)	(MoKa) $\lambda = 0.71073$	(MoKa) $\lambda = 0.71073$	(MoKa) $\lambda = 0.71073$
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a (Å)	8.6480 (4)	8.6577(2)	8.6344 (2)
b (Å)	10.4211 (5)	10.4166(3)	10.4202 (2)
c (Å)	12.0603 (6)	12.0856(4)	12.0281 (3)
α (°)	80.197 (4)	80.206(2)	80.171 (2)
β (°)	79.454 (4)	79.607(2)	79.315 (2)
γ (°)	82.476 (4)	82.473(2)	82.353 (2)
V (Å ³)	1047.33 (9)	1050.75(5)	1042.06 (4)
ρ_{calc} (g.cm ⁻³)	2.038	2.021	2.057
μ (MoK α) (mm ⁻¹)	3.644	3.442	3.874
2θ range (°)	6.564 to 60.882	6.56 to 61.078	6.974 to 60.86
Index ranges	$-12 \le h \le 12, -14 \le k \le 14, -16 \le 1 \le 16$	$\begin{array}{l} \text{-11} \leq h \leq 12, \text{-13} \leq k \\ \leq 14, \text{-16} \leq l \leq 16 \end{array}$	$\begin{array}{c} \text{-12} \leq h \leq 12, \text{-14} \leq k \leq \\ 14, \text{-16} \leq l \leq 16 \end{array}$
Reflections collected	17270	20971	20633
Independent	5565 [$R_{int} = 0.0503$,	5718 [$R_{int} = 0.0316$,	5678 [$R_{int} = 0.0255$,
reflections	$R_{sigma} = 0.0609$]	$R_{sigma} = 0.0325$]	$R_{sigma} = 0.0247]$
Data/restraints/param eters	5565/0/324	5718/0/324	5678/0/324
Goodness-of-fit on F2	1.052	1.065	1.060
Final R indexes	$R_1 = 0.0312, wR_2 =$	$R_1 = 0.0201$,	$R_1 = 0.0166, wR_2 =$
$[I \ge 2\sigma(I)]$	0.0550	$wR_2 = 0.0441$	0.0366
Final R indexes [all	$R_1 = 0.0385, wR_2 =$	$R_1 = 0.0221,$	$R_1 = 0.0175, wR_2 =$
data]	0.0592	$wR_2 = 0.0454$	0.0370
Largest diff.	0.86/-0.95	0.92/-0.74	0.74/-0.69
peak/hole/eÅ-3			

1.2 Table S3. Crystallographic data for compounds 1-3b.

 $[Ln_2(trz_2An)_3(H_2O)_4]_n$ ·10H₂O (Ln^{III} = Dy, Tb, Ho), Phase A

1.3 Table S4 Selected bond lengths and angles for $[Dy_2(trz_2An)_3(H_2O)_4]_n 10H_2O$ (1a)

Bonds	Å	Angles	0	Angles	0
Dy-O1	2.4253(16)	N1 - Dy - O1	75.82(6)	O2 – Dy – O6	134.38(6)
Dy - O2	2.3449(16)	N1 - Dy - O2	141.57(6)	O2 - Dy - O7	84.32(6)
Dy - O3	2.4303(17)	N1 - Dy - O3	134.56(6)	O2 - Dy - O8	87.99(6)
Dy - O4	2.4007(18)	N1 - Dy - O4	137.20(7)	O3 - Dy - O4	68.95(6)
Dy - 05	2.4511(17)	N1 - Dy - O5	76.46(6)	O3 - Dy - O5	64.82(6)
Dy - 06	2.4516(17)	N1 - Dy - O6	72.86(6)	O3 - Dy - O6	108.60(6)
Dy - 07	2.3924(19)	N1 - Dy - O7	80.64(7)	O3 - Dy - O7	144.32(6)
Dy - 08	2.3976(18)	N1 - Dy - O8	78.72(7)	O3 - Dy - O8	69.86(6)
Dy - N1	2.491(2)	O1 - Dy - O2	65.77(6)	O4 - Dy - O5	91.41(6)
C1 – O1	1.253(3)	O1 – Dy – O3	118.56(6)	O4 - Dy - O6	64.88(6)
C2 – O2	1.256(3)	O1 - Dy - O4	130.16(6)	O4 - Dy - O7	80.24(6)
C1 – C2	1.534(3)	O1 - Dy - O5	137.86(6)	O4 - Dy - O8	138.45(6)
C2 – C3	1.394(3)	O1 - Dy - O6	132.79(6)	O5 - Dy - O6	65.21(6)
		O1 - Dy - O7	68.92(6)	O5 - Dy - O7	135.53(6)
		O1 - Dy - O8	67.97(6)	O5 - Dy - O8	75.94(6)
		O2 - Dy - O3	70.20(6)	O6 - Dy - O7	71.83(6)
		O2 - Dy - O4	73.27(6)	O6 - Dy - O8	135.93(6)
		O2 – Dy – O5	135.01(6)	O7 - Dy - O8	135.48(6)

Bonds	Å	Angles	0	Angles	0	
Tb-O1	2.439(2)	N1 – Tb – O1	76.03(8)	O2 – Tb – O6	134.42(8)	_
Tb – O2	2.353(2)	N1 – Tb – O2	141.50(8)	O2 – Tb – O7	84.47(9)	
Tb – O3	2.413(2)	N1 – Tb – O3	137.00(9)	O2 – Tb – O8	87.96(8)	
Tb – O4	2.438(2)	N1 - Tb - O4	134.35(9)	O3 - Tb - O4	69.02(8)	
Tb – O5	2.468(2)	N1 - Tb - O5	76.51(8)	O3 - Tb - O5	91.21(8)	
Tb – O6	2.459(2)	N1 - Tb - O6	72.97(9)	O3 – Tb – O6	64.53(8)	
Tb – O7	2.406(3)	N1 - Tb - O7	80.31(9)	O3 – Tb – O7	72.08(9)	
Tb – O8	2.415(2)	N1 - Tb - O8	78.46(9)	O3 – Tb – O8	138.75(8)	
Tb – N1	2.504(3)	O1 – Tb – O2	65.49(7)	O4 – Tb – O5	64.48(8)	
C1 – O1	1.251(4)	O1 – Tb – O3	130.27(8)	O4 – Tb – O6	108.47(8)	
C2 – O2	1.253(4)	O1 – Tb – O4	118.54(8)	O4 – Tb – O7	144.88(8)	
C1 – C2	1.545(4)	O1 – Tb – O5	137.91(8)	O4 – Tb – O8	70.07(8)	
C2 – C3	1.393(4)	O1 – Tb – O6	132.93(8)	O5 – Tb – O6	65.47(9)	
C3 – C4	1.392(5)	O1 – Tb – O7	68.45(8)	O5 – Tb – O7	135.89(8)	
		O1 – Tb – O8	67.85(8)	O5 – Tb – O8	75.85(8)	
		O2 - Tb - O3	73.69(8)	O6 – Tb – O7	80.86(8)	
		O2 - Tb - O4	70.36(8)	O6 – Tb – O8	135.98(8)	
		O2 - Tb - O5	134.82(8)	O7 - Tb - O8	134.76(8)	

1.4 Table S5 Selected bond lengths and angles for $[Tb_2(trz_2An)_3(H_2O)_4]_n 10H_2O$ (2a)

1.5 Table S6. Selected bond lengths and angles for [Ho₂(trz₂An)₃(H₂O)₄]_n 10H₂O (3a)

Bonds	Å	Angles	o	Angles	0
Ho – O1	2.4205(16)	N1 - Ho - O1	75.50(6)	O2 – Ho – O6	134.38(6)
Ho – O2	2.4440(17)	N1 - Ho - O2	141.45(6)	O2 – Ho – O7	83.76(6)
Ho – O3	2.3303(16)	N1 – Ho – O3	134.80(6)	O2 – Ho – O8	88.07(6)
Ho – O4	2.4211(16)	N1 - Ho - O4	137.23(6)	O3 – Ho – O4	68.85(6)
Ho – O5	2.3882(7)	N1 - Ho - O5	76.48(6)	O3 – Ho – O5	64.99(5)
Ho – O6	2.4434(17)	N1 - Ho - O6	72.79(6)	O3 – Ho – O6	108.76(6)
Ho – O7	2.3887(17)	N1 – Ho – O7	80.92(6)	O3 – Ho – O7	143.85(6)
Ho – O8	2.3838(18)	N1 - Ho - O8	78.81(6)	O3 - Ho - O8	69.82(6)
H0 – N1	2.471(2)	O1 - Ho - O2	65.98(5)	O4 - Ho - O5	91.54(6)
C1 – O1	1.247(3)	O1 – Ho – O3	118.68(5)	O4 - Ho - O6	64.99(6)
C2 – O2	1.253(3)	O1 – Ho – O4	130.34(6)	O4 – Ho – O7	80.12(6)
C1 – C2	1.539(3)	O1 - Ho - O5	137.59(6)	O4 – Ho – O8	138.33(6)
C2 – C3	1.395(3)	O1 – Ho – O6	132.51(6)	O5 - Ho - O6	65.34(6)
		O1 - Ho - O7	68.70(6)	O5 – Ho – O7	136.00(6)
		O1 – Ho – O8	68.07(6)	O5 - Ho - O8	75.74(6)
		O2 - Ho - O3	70.15(6)	O6 – Ho – O7	135.88(6)
		O2 - Ho - O4	73.24(6)	O6 - H0 - O8	72.12(6)
		O2 - Ho - O5	135.11(6)	O7 - Ho - O8	135.53(6)

 $Ln_2(trz_2An)_3(H_2O)_4]_n$ ·7H₂O (Ln^{III} = Dy, Tb, Ho), Phase B

1.6 **Table S7**. Selected bond lengths and angles for $[Dy_2(trz_2An)_3(H_2O)_4]_n$ 7H₂O (1b)

Bonds	Å	Angles	0	Angles	0
Dy-O1	2.358(2)	N1 - Dy - O1	70.81(8)	O2 - Dy - O6	127.08(7)
Dy - O2	2.503(2)	N1 - Dy - O2	116.94(8)	O2 - Dy - O7	131.99(8)
Dy - O3	2.417(2)	N1 - Dy - O3	70.98(8)	O2 - Dy - O8	70.28(8)
Dy - O4	2.378(2)	N1 - Dy - O4	129.79(8)	O3 - Dy - O4	67.26(7)
Dy - 05	2.417(2)	N1 - Dy - O5	67.10(8)	O3 - Dy - O5	70.84(8)
Dy - 06	2.517(2)	N1 - Dy - O6	115.39(8)	O3 - Dy - O6	124.65(7)
Dy - 07	2.369(2)	N1 - Dy - O7	142.35(9)	O3 - Dy - O7	136.44(8)
Dy - 08	2.359(2)	N1 - Dy - O8	72.99(8)	O3 - Dy - O8	143.96(8)
Dy - N1	2.551(3)	O1 - Dy - O2	65.16(7)	O4 - Dy - O5	73.74(8)
C1 – O1	1.252(4)	O1 – Dy – O3	92.00(8)	O4 - Dy - O6	70.54(8)
C2 – O2	1.246(4)	O1 - Dy - O4	135.71(8)	O4 - Dy - O7	87.85(8)
C1 – C2	1.531(4)	O1 - Dy - O5	137.71(8)	O4 - Dy - O8	141.65(8)
C2 – C3	1.408(4)	O1 - Dy - O6	143.25(8)	O5 - Dy - O6	64.10(7)
		O1 - Dy - O7	81.40(8)	O5 - Dy - O7	94.58(8)
		O1 - Dy - O8	76.74(8)	O5 - Dy - O8	137.36(8)
		O2 - Dy - O3	67.97(8)	O6 - Dy - O7	71.52(8)
		O2 - Dy - O4	70.74(7)	O6 - Dy - O8	73.61(8)
		O2 – Dy – O5	133.26(8)	O7 – Dy – O8	76.33(8)

Bonds	Å	Angles	0	Angles	0	
Tb-O1	2.4014(14)	N1 – Tb – O1	67.11(5)	O2 – Tb – O6	143.30(5)	
Tb – O2	2.5260(15)	N1 – Tb – O2	115.20(5)	O2 – Tb – O7	71.85(5)	
Tb – O3	2.4279(15)	N1 – Tb – O3	70.98(6)	O2 – Tb – O8	74.63(5)	
Tb – O4	2.3900(15)	N1 - Tb - O4	129.57(5)	O3 – Tb – O4	66.92(5)	
Tb – O5	2.5086(15)	N1 – Tb – O5	116.84(5)	O3 – Tb – O5	68.19(5)	
Tb – O6	2.3707(15)	N1 - Tb - O6	70.75(5)	O3 - Tb - O6	92.42(5)	
Tb – O7	2.3817(17)	N1 - Tb - O7	72.79(6)	O3 - Tb - O7	143.77(5)	
Tb – O8	2.3672(15)	N1 - Tb - O8	141.80(6)	O3 - Tb - O8	136.43(5)	
Tb – N1	2.5664(18)	O1 – Tb – O2	63.86(5)	O4 - Tb - O5	70.91(5)	
C1 – O1	1.255(2)	O1 – Tb – O3	70.52(5)	O4 – Tb – O6	135.91(5)	
C2 – O2	1.246(2)	O1 – Tb – O4	73.56(5)	O4 - Tb - O7	142.03(5)	
C1 – C2	1.531(3)	O1 – Tb – O5	133.27(5)	O4 – Tb – O8	88.62(5)	
C2 – C3	1.402(3)	O1 – Tb – O6	137.67(5)	O5 – Tb – O6	65.20(5)	
		O1 - Tb - O7	94.69(6)	O5 - Tb - O7	131.83(5)	
		O1 – Tb – O8	138.18(5)	O5 - Tb - O8	69.92(5)	
		O2 – Tb – O3	124.15(5)	O6 – Tb – O7	76.34(5)	
		O2 - Tb - O4	70.58(5)	O6 – Tb – O8	80.57(5)	
		O2 – Tb – O5	127.34(5)	07 – Tb – 08	76.36(6)	

1.7 **Table S8**. Selected bond lengths and angles for [Tb₂(trz₂An)₃(H₂O)₄]_n 7H₂O (**2b**)

1.8 **Table S9**. Selected bond lengths and angles for $[Ho_2(trz_2An)_3(H_2O)_4]_n \cdot 7H_2O$ (3b)

Bonds	Å	Angles	o	Angles	o
Ho – O1	2.3793(13)	N1 - Ho - O1	67.20(5)	O2 – Ho – O6	142.96(4)
Ho – O2	2.5081(13)	N1 – Ho – O2	115.55(5)	O2 – Ho – O7	71.39(5)
Ho – O3	2.4052(13)	N1 – Ho – O3	70.99(5)	O2 – Ho – O8	74.02(5)
Ho – O4	2.3647(13)	N1 - Ho - O4	130.15(5)	O3 – Ho – O4	67.57(4)
Ho – O5	2.4956(13)	N1 - Ho - O5	117.06(5)	O3 - Ho - O5	68.01(4)
Ho – O6	2.3487(13)	N1 - Ho - O6	70.49(5)	O3 – Ho – O6	91.99(4)
Ho – O7	2.3547(13)	N1 - Ho - O7	72.84(5)	O3 – H0 – O7	143.82(5)
Ho – O8	2.3405(13)	N1 - Ho - O8	141.78(5)	O3 – Ho – O8	136.32(5)
Ho – N1	2.5396(16)	O1 - Ho - O2	64.27(4)	O4 - Ho - O5	70.57(4)
C1 – O1	1.252(2)	O1 – Ho – O3	70.97(4)	O4 - Ho - O6	135.94(4)
C2 – O2	1.246(2)	O1 - Ho - O4	73.96(5)	O4 – Ho – O7	141.50(5)
C1 – C2	1.529(3)	O1 – Ho – O5	133.31(4)	O4 - Ho - O8	88.05(5)
C2 – C3	1.404(2)	O1 - Ho - O6	137.51(5)	O5 - Ho - O6	65.56(4)
		O1 – Ho – O7	94.38(5)	O5 – Ho – O7	132.15(5)
		O1 - Ho - O8	137.98(5)	O5 - Ho - O8	69.87(5)
		O2 - Ho - O3	124.94(4)	O6 – Ho – O7	76.59(5)
		O2 - Ho - O4	70.51(4)	O6 – Ho – O8	80.86(5)
		O2 - Ho - O5	126.83(4)	O7 – Ho – O8	76.37(5)

1-3a and **1-3b** polycrystalline samples are pure and homogeneous, proving to be perfectly consistent with the calculated pattern from CIF and isostructural to the corresponding Er^{III}-based frameworks¹ (Figure S1).

1.9 Figure S1. Experimental and calculated PXRD patterns in 2θ range of 5-40° for 1-3a (a) and for 1-3b (b), compared with the respective Er^{III}-coordination networks of phase a and b (magenta lines).

2. FT-IR Spectroscopy

FT-IR spectra of **1-3a** and **1-3b** were performed and compared with H_2trz_2An linker to further confirm the coordination between trz_2An and Ln^{III} ion. **1-3a** and **1-3b** spectra are here reported, with the principal band assignment for 1a and 1b as representative of the corresponding series (**Table S10**). As shown in **Figure S2**, the band at 1650 cm⁻¹ of nC-O of free ligand disappear and the broad band centered at 1550 cm⁻¹ is downshifted, due to the coordination of C-O in the frameworks. Below 460 cm⁻¹ the typical bands related to the nLn-O stretching vibrations are present, due to the coordination bonds.

2.1 Figure S2. FT-IR spectra of H2trz2An (purple), 1a (blue) and 1b (green) in the 1800-400 cm⁻¹ region.

2.2 Table S10. Assignments of characteristic bands for 1a and 1b, all the frequencies are in cm⁻

	1.3-0		
	1a	1b	
ν O-H	3388	3438	
ν C=0	1605	1589	
	1513	1506	
v C=O + v C=C aromatic	1492	1488	
w aromatic ring	1385	1391	
v aronnatic ring		1377	
N C N	1321	1325	
V C-N	1272	1278	
		1272	
v N-N	1183	1181	
δ C=C	835	835	
	459	438	
v by-0	446		

2.3 Figure S3. FT-IR spectra of 2a (purple line) and 2b (orange line) in 1800-400 cm⁻¹ range.

2.4 Figure S4. FT-IR spectra of 3a (purple line) and 3b (orange line) in 1800-400 cm⁻¹ range.

3. Magnetic Properties and Theoretical Calculations

Energy (cm ⁻¹)	g _{xx}	g _{уу}	g _{zz}
0.0	0.140	0.244	18.777
71.6	2.889	6.253	11.751
102.5	7.901	5.375	0.398
154.9	1.866	3.560	10.498
192.9	0.821	3.614	14.433
222.3	1.622	3.232	11.996
263.1	0.773	1.110	16.893
312.7	0.262	0.340	19.031

3.1 Table S11. The CASSCF/RASSI-SO/SINGLE_ANISO computed energy and g tensors of

- 3.2 Figure S5. A comparison of experimental and computed temperature dependent magnetization of 1a. A dipolar coupling (zJ) of -0.12 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data. The experimental data has been scaled with a factor of 0.90. We have added TIP (temperature independent paramagnetism) value of 0.003 emu/mol to correct the experimental χ T value of 1a.
- 3.3 Table S12. The CASSCF/RASSI-SO/SINGLE_ANISO computed energy and g tensors of the 6H15/2 KDs for **1a_des**.

Energy (cm ⁻¹)	g _{xx}	g _{уу}	g _{zz}
0.0	0.002	0.006	19.328
139.1	0.101	0.163	15.950
264.9	9.641	6.526	2.764
307.1	10.941	5.960	0.333
325.6	0.574	2.462	12.357
385.8	1.789	2.223	13.321
426.9	0.316	0.359	15.546
554.4	0.009	0.019	19.456

3.4 Figure S6. (a) The anisotropy axis of KD1 of 1a_des. Colour code: Dy:purple, O:red, N:blue, C:grey. Hydrogens are omitted for clarity. (b) A comparison of experimental and computed temperature dependent magnetization of 1a_des. The experimental data has been scaled with a factor of 0.90. We have added TIP (temperature independent paramagnetism) value of 0.005 emu/mol to correct the experimental χT value of 1a_des. A dipolar coupling (zJ) of -0.02 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data.

3.5 Table S13. The CASSCF/RASSI-SO/SINGLE_ANISO computed energy and g tensors of the $^{6}\text{H}_{15/2}$ KDs for 1b.

Energy (cm ⁻¹)	g _{xx}	g _{yy}	g _{zz}
0.0	0.021	0.041	19.547
102.6	0.412	0.521	18.352
145.6	3.231	4.950	12.319
184.0	1.326	5.552	10.358
243.3	0.113	1.917	15.031
304.9	10.597	6.814	1.728
348.7	2.364	4.755	10.862
401.0	0.581	2.383	17.762

3.6 Figure S7. (a) The anisotropy axis of KD1 of 1b. Colour code: Dy:purple, O:red, N:blue, C:grey. Hydrogens are omitted for clarity. (b) The energy vs magnetic moment for J = 15/2 ground state of Dy in **1b**. The red arrow represents QTM via ground state and TA-QTM via first excited state. The sky blue dotted arow represent the Orbach process. The green arrow shows possible mechanism of magnetization relaxation. (c) A comparison of experimental and computed temperature dependent magnetization of **1b**. A dipolar coupling (zJ) of -0.08 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data. The computed data has been scaled with a scaling factor of 1.1 for **1b**.

3.7 Figure S8. Loprop charge model of (a) 1a, (b) 1a_des and (c) 1b for Table S14. Colour code: Dy:purple, O:red, N:blue, C:grey. Hydrogens are omitted for clarity.

3.8 Table S14. The CASSCF computed Loprop charges metal and atoms in the first coordination sphere of 1a, 1a_des and 1b.

Atom	1a	Atom	1a_des	Atom	1b
Dy	2.5196	Dy	2.5178	Dy	2.5176
O80	-0.6985	O78	-0.7488	O76	-0.7443
O83	-0.7128	079	-0.7182	077	-0.6576
O84	-0.6728	O80	-0.7339	079	-0.7263

O85	-0.7278	O83	-0.6796	O80	-0.7085
O86	-0.6991	O84	-0.7536	O81	-0.6925
O87	-0.7211	O85	-0.6925	082	-0.7204
O88	-0.6959	O86	-0.6898	O84	-0.7179
O89	-0.6761	N67	-0.4347	O85	-0.6910
N68	-0.4321			N55	-0.3976

3.9 Table S15. The computed crystal field parameters (B_k^q) ; Stevens notation) in cm⁻¹ obtained for 1a, 1a_des and 1b.

K	Q	1 a	1a_des	1b
	-2	-7.62E-01	2.21E+00	-1.35E+00
	-1	6.54E-01	3.80E+00	-3.77E+00
2	0	-8.53E-01	-3.13E+00	-3.41E+00
	1	2.02E-01	6.76E+00	-5.47E-01
	2	1.49E+00	-7.04E-02	8.76E-01
	-4	-4.60E-03	2.88E-02	-1.09E-02
	-3	-2.44E-02	1.54E-01	-4.73E-02
	-2	-2.81E-03	2.91E-02	4.32E-03
	-1	1.75E-03	-4.53E-02	4.96E-02
4	0	-1.92E-03	-9.63E-03	-3.76E-03
	1	5.47E-03	-7.32E-02	7.73E-03
	2	-2.43E-04	-2.31E-02	1.98E-03
	3	-4.48E-02	-2.43E-02	-1.99E-02
	4	3.48E-03	-2.21E-02	-1.30E-02
	-6	-2.33E-05	-1.37E-04	-6.53E-05
	-5	-8.58E-05	-4.08E-04	-1.11E-03
	-4	-2.74E-04	7.21E-05	-1.07E-04
	-3	-3.12E-04	-2.84E-06	2.52E-04
	-2	-2.55E-05	-3.40E-04	1.17E-04
	-1	-8.55E-05	1.15E-04	-2.64E-04
6	0	-2.19E-05	3.18E-05	2.24E-06
	1	-5.12E-06	1.55E-05	-3.24E-05
	2	-3.81E-05	9.72E-05	-1.41E-04
	3	-1.75E-04	-1.99E-05	-5.51E-05
	4	1.20E-05	-3.28E-05	-5.96E-05
	5	2.50E-04	1.90E-04	1.74E-04
	6	8.75E-05	-1.24E-04	3.05E-04

2a	2a-des	2b
0.0	0.0	0.0
0.7	0.1	0.1
75.1	137.9	138.4
83.1	139.6	138.9
116.2	214.2	198.5
136.8	224.4	203.4
148.7	268.1	274.8
184.4	290.1	282.6
186.5	323.1	343.8
259.9	325.6	364.0
260.3	347.0	393.1
357.0	599.6	441.0
357.1	600.2	446.7

3.10 **Table S16**. The CASSCF/RASSI-SO/SINGLE_ANISO computed energy (cm⁻¹) of low lying states generated from ⁷F₆ for **2a**, **2a-des** and **2b**.

3.11 **Table S17.** The CASSCF/RASSI-SO/SINGLE_ANISO computed g_{zz} and m_J composition of first two pKDs (pseudo KDs) from ⁷F₆ for **2a**, **2a-des** and **2b**.

2a			2a-des	2b	
g _{zz}	m _J composition	g _{zz}	m _J composition	g _{zz}	m _J composition
17.389	0.93 ±6>	17.716	0.97 ±6>	17.889	0.99 ±6>
14.551	0.36 ±5>+0.31 ±3>+0.22 ±1>	15.216	0.59 ±5>+0.16 ±3>+0.15 ±4>	15.139	0.86 ±5>

Figure S9. (a) The anisotropy axis of KD1 of 2a. Colour code: Tb:maroon, O:red, N:blue,C:grey. Hydrogens are omitted for clarity. (b) The mechanism of magnetization relaxation of 2a.The red arrow represents tunnel splitting via ground state and first excited state. The sky blue dotted arow represent the Orbach process. The green arrow shows possible mechanism of

magnetization relaxation. (c) A comparison of experimental and computed temperature dependent magnetization of **2a**. We have added TIP (temperature independent paramagnetism) value of 0.005 emu/mol to correct the experimental χT value of **2a**. A dipolar coupling (zJ) of - 0.01 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data.

3.12 Figure S10. (a) The anisotropy axis of KD1 of 2a_des. Colour code: Tb:maroon, O:red, N:blue, C:grey. Hydrogens are omitted for clarity. (b) The mechanism of magnetization relaxation of 2a_des. The red arrow represents tunnel splitting via ground state and first excited state. The sky blue dotted arow represent the Orbach process. The green arrow shows possible mechanism of magnetization relaxation. (c) A comparison of experimental and computed temperature dependent magnetization of 2a_des. We have added TIP (temperature independent paramagnetism) value of 0.005 emu/mol to correct the experimental χT value of 2a. A dipolar coupling (zJ) of -0.05 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data.

3.13 Figure S11. (a) The anisotropy axis of KD1 of 2b. Colour code: Tb:maroon, O:red, N:blue, C:grey. Hydrogens are omitted for clarity. (b) The mechanism of magnetization relaxation of 2b. The red arrow represents tunnel splitting via ground state and first excited state. The sky blue dotted arow represent the Orbach process. The green arrow shows possible mechanism of magnetization relaxation. (c) A comparison of experimental and computed temperature dependent magnetization of 2b. We have added a scaling factor of 0.9 to correct the experimental χT value of 2b. A dipolar coupling (zJ) of -0.01 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data.

- 3.14 Figure S12. Loprop charge model of (a) 2a (b) 2a_des (c) 2b for Table S19. Colour code: Tb:maroon, O:red, N:blue, C:grey. Hydrogens are omitted for clarity.
- 3.15 Table S18. The CASSCF computed Loprop charges metal and atoms in the first coordination sphere of 2a, 2a des and 2b.

Atom	2a	Atom	2a_des	Atom	2b
Tb	2.5191	Tb	2.5167	Tb	2.5172
O80	-0.6908	O78	-0.7548	O76	-0.7557
O81	-0.7353	O79	-0.7058	O78	-0.7304
O82	-0.6657	O80	-0.7363	O79	-0.7093
O83	-0.7471	O83	-0.6778	O81	-0.6503
O84	-0.7064	O84	-0.7542	O82	-0.6934
O87	-0.6915	O85	-0.6974	O83	-0.7147
O88	-0.6910	O86	-0.6891	O84	-0.6968
O89	-06824	N67	-0.4360	O85	-0.6925
N65	-0.4287			N55	-0.3988

3.16 Table S19. The computed crystal field parameters (B_k^q ; Stevens notation) in cm⁻¹ obtained

for 2a, 2a_des and 2b.

k	q	2a	2a_des	2b
2	-2	3.01E+00	-1.71E+00	-1.50E+00

	-1	-7.23E-01	1.45E-01	2.31E+00
	0	-1.88E+00	-5.99E+00	-2.85E+00
	1	1.12E+00	-2.22E-01	-1.25E+00
	2	1.90E+00	-3.08E+00	1.44E+00
	-4	1.51E-03	-2.12E-02	-1.75E-02
	-3	4.81E-02	1.55E-02	3.97E-02
	-2	5.79E-03	4.22E-02	4.74E-03
	-1	1.66E-02	2.82E-03	-3.55E-02
4	0	-4.47E-03	3.78E-03	-5.80E-03
	1	-5.76E-03	9.70E-03	1.41E-02
	2	5.23E-03	2.14E-04	-1.25E-02
	3	5.27E-02	-1.60E-01	-1.61E-02
	4	-3.62E-02	-7.39E-02	9.97E-03
	-6	-1.24E-04	9.37E-05	3.85E-04
	-5	-2.25E-04	-3.67E-04	-2.42E-04
	-4	5.43E-05	-3.80E-05	-5.99E-05
	-3	1.33E-04	1.24E-04	-4.81E-05
	-2	2.23E-05	-2.12E-04	-2.94E-05
	-1	9.02E-06	-4.06E-05	3.22E-04
6	0	-3.35E-05	-1.93E-05	1.00E-05
	1	1.01E-05	1.53E-05	-7.35E-05
	2	-8.68E-05	3.21E-06	-8.29E-05
	3	2.45E-05	3.55E-04	2.04E-04
	4	-1.73E-04	2.47E-04	2.18E-05
	5	2.56E-04	5.85E-04	-1.11E-03
	6	5.23E-05	-2.85E-04	3.72E-05

3.17 Figure S13. (a) The anisotropy axis of KD1 of 3a. Colour code: Ho:green, O:red, N:blue, C:grey. Hydrogens are omitted for clarity. (b) The mechanism of magnetization relaxation of 3a. The red arrow represents tunnel splitting via ground state and first excited state. The sky blue dotted arow represent the Orbach process. The green arrow shows possible mechanism of magnetization relaxation. (c) A comparison of experimental and computed temperature dependent magnetization of 3a. The experimental data has been scaled by a factor of 0.90. A dipolar coupling (zJ) of -0.5 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data.

3 a	3a-des	3b
0.0	0.0	0.0
9.1	0.7	3.7
25.4	73.9	32.4
46.3	84.7	57.3
56.5	94.7	87.8
64.7	111.8	105.6
65.8	141.2	116.9
82.7	160.3	123.3
96.5	166.0	134.5
149.1	177.6	169.5
163.7	194.5	190.4
177.5	210.0	199.0
193.9	223.0	208.9
223.9	248.6	248.8
230.9	258.0	275.5
255.9	281.0	283.8
258.7	286.3	297.0

3.18 Table S20. The CASSCF/RASSI-SO/SINGLE_ANISO computed energy (cm⁻¹) of low lying states generated from ${}^{5}I_{8}$ for 3a, 3a-des and 3b.

3.19 Table S21. The CASSCF/RASSI-SO/SINGLE_ANISO computed gzz and mJ composition of first two pKDs (pseudo KDs) from ⁵I₈ for 3a, 3a-des and 3b.

3a		3a-des		3b	
g _{zz}	m _J composition	g _{zz}	m _J composition	g _{zz}	m _J composition
14.140	0.35 ±8>+0.18 ±7>	18.807	$0.84 \pm8>+0.03 \pm6>$	16.967	$0.62 \pm 8>+0.16 \pm 5>$
9.583	0.38 ±2>+0.17 ±6>	14.393	0.34 ±3>+0.19 ±7>	13.489	$0.40 \pm4>+0.17 \pm5>$

3.20 Figure S14. (a) The anisotropy axis of KD1 of 3a_des. Colour code: Ho:green, O:red, N:blue, C:grey. Hydrogens are omitted for clarity. (b) The mechanism of magnetization relaxation of 3a_des. The red arrow represents tunnel splitting via ground state and first excited state. The sky blue dotted arow represent the Orbach process. The green arrow shows possible mechanism of magnetization relaxation. (c) A comparison of experimental and computed temperature dependent magnetization of 3a_des. The experimental data has been scaled by a factor of 0.80. A dipolar coupling (zJ) of -0.7 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data.

3.21 Figure S15. (a) The anisotropy axis of KD1 of 3b. Colour code: Ho:green, O:red, N:blue, C:grey. Hydrogens are omitted for clarity. (b) The mechanism of magnetization relaxation of 3b. The red arrow represents tunnel splitting via ground state and first excited state. The sky blue dotted arow represent the Orbach process. The green arrow shows possible mechanism of magnetization relaxation. (c) A comparison of experimental and computed temperature dependent magnetization of 3b. A dipolar coupling (zJ) of -0.4 cm⁻¹ was considered in our calculations to simulate the experimental magnetic data.

3.22 Figure S16. Loprop charge model of (a) 3a (b) 3a_des (c) 3b for Table S24. Colour code: Ho:green, O:red, N:blue, C:grey. Hydrogens are omitted for clarity.

Atom	3a	Atom	3a_des	Atom	3b
Но	2.5145	Но	2.5150	Но	2.5128
O80	-0.6650	O78	-0.7485	O76	-0.7463
O81	-0.7328	079	-0.7178	O78	-0.7193
O82	-0.6882	O80	-0.7338	079	-0.7143
O85	-0.7238	O83	-0.6791	O80	-0.6515
O86	-0.6802	O84	-0.7534	O81	-0.7224
O87	-0.7338	O85	-0.6923	O83	-0.6936
O88	-0.7023	O86	-0.6974	O84	-0.6961
O89	-0.6877	N67	-0.4346	O85	-0.7144
N64	-0.4424			N55	-0.3983

3.23 Table S22. The CASSCF computed Loprop charges metal and atoms in the first coordination sphere of 3a, 3a_des and 3b.

3.24 **Table S23**. The computed crystal field parameters (B_k^q ; Stevens notation) in cm⁻¹ obtained for **3a**, **3a_des** and **3b**.

k	q	3 a	3a_des	3b
2	-2	-1.05E-01	4.87E-02	1.74E-01
	-1	4.96E-01	-9.31E-01	-1.75E-01
	0	-3.13E-01	-5.84E-01	-5.45E-01
	1	-4.24E-04	2.76E-01	2.26E-01

	2	-3.92E-01	-5.61E-01	-2.99E-01
	-4	4.52E-05	-6.20E-03	3.82E-03
	-3	4.42E-03	-6.49E-03	4.23E-03
	-2	-9.92E-04	-5.08E-03	-1.39E-03
	-1	3.13E-03	5.46E-03	8.95E-03
4	0	-7.45E-04	-2.23E-03	1.07E-04
	1	-9.54E-04	3.15E-03	-7.38E-03
	2	-1.57E-03	-9.56E-03	-1.98E-03
	3	1.74E-02	1.34E-02	5.03E-03
	4	4.78E-03	-5.14E-03	-8.55E-04
	-6	-1.19E-04	-9.38E-05	-1.39E-04
	-5	-1.86E-04	-1.38E-04	-1.05E-03
	-4	-6.14E-05	7.58E-05	-1.29E-04
	-3	2.33E-04	2.57E-04	4.68E-05
	-2	-1.78E-05	9.74E-05	-1.46E-04
	-1	-7.70E-05	1.78E-05	2.52E-06
6	0	9.89E-06	-1.14E-05	-2.07E-05
	1	1.94E-04	9.21E-05	-4.00E-05
	2	1.40E-04	2.35E-05	4.36E-05
	3	-3.66E-05	-2.72E-04	4.07E-04
	4	-2.70E-04	-8.18E-05	-5.87E-06
	5	-7.70E-04	-3.98E-05	-4.30E-04
	6	-2.92E-05	-2.86E-05	-1.45E-04

3.25 Figure S17. Magnetization (M) versus field (H) of 1a from 2 to 8 K.

3.26 Figure S18. Magnetization (M) versus field (H) of 1a_des from 2 to 8 K.

3.27 Figure S19. Magnetization (M) versus field (H) of 1b from 2 to 8 K.

3.28 Figure S20. Magnetization (M) versus field (H) of 2a from 2 to 8 K.

3.29 Figure S21. Magnetization (M) versus field (H) of 2a_des from 2 to 8 K.

3.30 Figure S22. Magnetization (M) versus field (H) of 2b from 2 to 8 K.

3.31 Figure S23. Magnetization (M) versus field (H) of 3a from 2 to 8 K.

3.32 Figure S24. Magnetization (M) versus field (H) of 3a_des from 2 to 8 K.

3.33 Figure S25. Magnetization (M) versus field (H) of 3b from 2 to 8 K.

3.34 Figure S26. Temperature dependence of χ ' (full symbols) and χ " (empty symbols) of 1a measured in contact with the mother liquor in an applied dc field of 0.1 T at frequencies in the range 100 to 10000 Hz.

3.35 Figure S27. Plot of Ln τ versus T-1 for 1a_des (a), 1b (b) and 2b (c).

33

3.36 Figure S28. Thermal dependence of the relaxation time of 1a_des (a) and 2b (b) and best fit from two terms mechanism described in text.

34

3.37 Figure S29. Cole-Cole plots of 1a_des (a) and 1b (b) and 2b (c) measured at the same temperatures as Figures 10-12 under an applied dc field of 0.1 T. Solid lines represent the best fitting of the experimental data to a Cole-Cole function.

3.38 Figure S30. AC susceptibility in an applied dc field of 0.1 T of 1a_des measured as a function of the frequency at the different temperatures (2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 K).
(a): Real component. (b): Imaginary component. Solid lines represent the best fitting of the experimental data to a Cole-Cole function.

3.39 Figure S31. AC susceptibility in an applied dc field of 0.1 T of 1b measured as a function of the frequency at the different temperatures (2.0, 2.5, 3.0, 3.5 and 4.0 K). (a): Real component. (b): Imaginary component. Solid lines represent the best fitting of the experimental data to a Cole-Cole function.

3.40 Figure S32. AC susceptibility in an applied dc field of 0.1 T 2b measured as a function of the frequency at the different temperatures (2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 K). (a): Real component. (b): Imaginary component. Solid lines represent the best fitting of the experimental data to a Cole-Cole function.