Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Table of contents

S1 Experimental procedures	1
S2 X-ray crystallography	2
S3 Structural representations	4
S4 Bond valence calculations of the C ₂ O ₄ -POM	5
S5 Characterization of the C_2O_4 -POM	7
S6 Characterization of Pd/(C ₂ O ₄ -POM)@rGO	10
S7 Catalytic Hydrogenation of Olefins	14
S8 Computational details	17
S9 References	17

S1 Experimental procedures

1.1 Materials and Instruments

The precursor $K_5Na_4[P_2W_{15}(TaO_2)_3O_{59}]$ ·17H₂O was synthesized according to the procedure described in our previous report.¹ PdCl₂ was purchased from Macklin Chemical Company. Graphene oxide (GO) (10 mg/mL) was purchased from Aladdin Chemical Company. All the other reagents were obtained commercially and used without further purification.

FT-IR analysis in ATR mode was performed by a Perkin Elmer Spectrum 400 FT-IR/FT-FIR Spectrometer equipped with ATR module in the range of 400–4000 cm⁻¹ at room temperature.

UV-vis was carried out in the range of 200-800 nm on a China Cary 100 Ultraviolet spectrophotometer.

Powder X-ray diffraction (pXRD) measurements were performed on a Panalytical X'Pert3 Powder diffractometer with graphite monochromatized Cu $K\alpha$ radiation (λ = 0.1541 nm, 40 KV, 150 mA) at 298 K.

Elemental analyses for Na, P, Ta , W and Pd were determined with a Agilent 7800(MS) ICP atomic emission spectrometer. Elemental analysis for C was performed on a Vario EL cube elemental analyzer.

Thermal analyses were performed on a Netzsch 449C thermal analyzer. The sample was heated to 800 $^{\circ}$ C with a heating rate of 5 $^{\circ}$ C/min, under an N₂ atmosphere.

Scanning electron microscope (SEM) analysis was conducted on a ZEISS GeminiSEM 300 scanning electron microscope equipped with a super energy-dispersive spectrometer (EDS).

High-resolution transmission electron microscopy (HRTEM) analysis was conducted on a FEI Talos F200x transmission electron microscope equipped with mapping. TEM samples were prepared by casting several drops of a sample solution onto copper-mesh TEM grid mounted with a holey carbon film.

Raman spectra were obtained on a LabRAMHR Evolution 4000 spectrometer with 532 nm wavelength incident laser light.

X-ray photoelectron spectroscopy (XPS) measurements were performed on Thermo Fisher Scientific ESCALAB250Xi X-ray photoelectron spectroscopy.

In situ X-ray photoelectron spectra (in situ XPS) were recorded using an ESCALAB 250Xi spectrometer (Thermo Scientific) with a monochromatic AI anode K α radiation (1486.6 eV), and the charging effects were corrected by setting the C1s binding energy of the adventitious carbon to 284.8 eV. Prior to the measurement, the sample of Pd/(C₂O₄-POM)@rGO was kept in a pretreatment chamber in high purity hydrogen at room temperature for 30 min. Then the sample was directly moved to the analysis chamber without being exposed to the environment.

Nuclear magnetic resonance (NMR) spectra of ³¹P, ¹H and ¹³C were recorded on a Bruker Advance 600 MHz spectrometer. The chemical shift of ³¹P spectrum uses 85% H₃PO₄ ($\delta = 0$) as the internal standard, and chemical shifts were reported in parts per million (ppm, δ).

Cyclic voltammograms (CV) was recorded on an electrochemical workstation (Shanghai Chenhua Instrument Co. Ltd) at room temperature based on a three electrodes system.

1.2 Synthesis

Synthesis of K₅Na₄[P₂W₁₅(TaO₂)₃O₅₉]·17H₂O

K₅**Na**₄[**P**₂**W**₁₅(**TaO**₂)₃**O**₅₉]·17**H**₂**O** was synthesized according to our previous report,¹ but with some modifications. K₈[Ta₆O₁₉]·17H₂O² (11 g, 5.5 mmol) was dissolved in an H₂O₂ solution (60 mL of 30% aqueous H₂O₂ in 800 mL of deionized water) at room temperature. HCl (75 mL, aq. 1.0 M) was added with vigorous stirring in a single addition, followed by the immediate addition of Na₁₂[α-P₂W₁₅O₅₆]·18H₂O³ (47.5 g, 0.011 mol, dried and ground to a fine powder before use). The resulting mixture was stirred from 30 min at room temperature and then KCl (35 g) was added. The mixture was stirred for 40 min and filtered to remove a small amount of white precipitate. Solid KCl (125 g) was added to the resulting yellow filtrate and stirred for another 40 min. The resulting yellow precipitate was collected by filtration, washed three times with ethanol (20 mL), and dried in air to give the product as a yellow powder (32 g, 55% yield based on Ta precursor). ³¹P NMR (D₂O) δ = -10.5 (s), -14.5 (s) (referenced externally to 85% H₃PO₄).

Synthesis of $Na_2H_{38}[P_8W_{60}Ta_{12}O_{242}(C_2O_4)_4]$ ·56H₂O (C₂O₄-POM)

A sample of $K_5Na_4[P_2W_{15}(TaO_2)_3O_{59}] \cdot 17H_2O$ (0.20 g, 0.04 mmol) was dissolved in 20 mL of deionized water at 80 °C. Solid NaHSO₃ (0.04 g, 0.38 mmol) was added with stirring until the yellow solution became colorless. Then, solid $(NH_4)_2C_2O_4$ (0.12 g, 0.84 mmol) was added. The pH of the resulting solution was adjusted to 3.0 with hydrochloric acid (1 M), and further stirred at 80 °C for 40 min. After cooled to room temperature the reaction solution was filtrated and left for evaporation. Light yellow cuboid crystal products were obtained after about one week. Yield: 0.13 g (65% based on $K_5Na_4[P_2W_{15}(TaO_2)_3O_{59}] \cdot 17H_2O$). Anal. Calcd. (%): C 0.51, Na 0.24, P 1.31, Ta 11.52, W 58.78; found C 0.58, Na 0.38, P 0.88, Ta 11.51, W 59.33. IR (KBr disks, cm⁻¹): 1608 (vw), 1405 (vw), 1078 (vw), 1012 (vw), 945 (s), 893 (s). ³¹P NMR (D_2O) δ = -11.5 -13.6 ppm. ¹³C{¹H} NMR (D_2O) δ = -165.42 ppm.

Synthesis of composite Pd/(C₂O₄-POM)@rGO

Pd/(C₂O₄-POM)@rGO was synthesized according to the published method⁴. 4 mL 10 mg/mL of GO dispersion was dispersed in 400 mL of high purity water and ultrasonic peel for 3 h. Adjust the pH of the solution to 2.5 using 1M H₂C₂O₄ solution, then 1 mL 1.2 g/mL C₂O₄-POM was added. The mixture was stirred for 30 minutes. 4 mL 10 mM PdCl₂ solution was added to the mixture and stirred for another 20 minutes. 30 mL ethanol was added and the resulting mixture was transferred to the photoreactor, flushed with nitrogen, and irradiated with a 175 W mercury lamp for 1h. The resulting black suspension was filtered and then washed with deionized water and ethanol three times to obtain the composite Pd/(C₂O₄-POM)@rGO (46.20 mg). The black solid material was dried in a vacuum drying oven at 100 °C for 2 h. The Pd loading amount in the composite (for GO support) was 10.64 wt% as determined by ICP-AES, the C₂O₄-POM loading amount in the composite (for GO support) was 13.50 wt% as determined by ICP-AES.

Synthesis of composite of Pd@rGO

Pd@rGO was synthesized according to the reported photoreduction method⁵. 4 mL 10 mg/mL of GO dispersion was dispersed in 400 mL of high purity water and ultrasonic peel for 3 h. Then 2 mL of 10 mM PdCl₂ solution was added. The resulting mixtrue was stirred for 30 minutes and then transferred to the photoreactor. The photoreactor was flushed with nitrogen and irradiated with a 175 W mercury lamp for 1 h. The black suspension was filtered and washed with deionized water and ethanol three times to obtain the composite **Pd@rGO**. The black solid was dried in a vacuum drying oven at 100 °C for 2 h. The Pd loading amount in the composite (for GO support) was 12.56 wt% as determined by ICP-AES.

S2 X-ray crystallography

Single crystal XRD analysis of C_2O_4 -POM was recorded on an Agilent SuperNova Dual diffractometer using graphitemonochromated Mo Ka radiation, $\lambda = 0.71073$ Å. The linear absorption coefficients, scattering factors for the atoms, and anomalous dispersion corrections were taken from the International Tables for X-Ray Crystallography. Empirical absorption corrections were applied. Structures were solved using direct methods (SHELXT)⁶ and refined by full-matrix least-squares (SHELXL) interfaced with the program OLEX2.⁷ Anisotropic thermal parameters were used to refine all non-hydrogen atoms, with the exception for a few oxygen atoms. Those hydrogen atoms attached to lattice water molecules were not located. Crystallization water molecules were estimated by thermogravimetry and only partial of them were achieved with the X-ray structure analysis. The crystal data and structure refinement results are summarized in Table S1. Further details on the crystal structure investigations can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/ by quoting the depository numbers CCDC-2321884 (C₂O₄-POM).

T			. .
Table S1.	Crystal data	a and structura	Il refinements. ^[a]

Compound	C ₂ O ₄ -POM
Formula	C ₈ Na ₂ O ₂₈₃ P ₈ Ta ₁₂ W ₆₀
Formula weight (g·mol⁻¹)	18120.22
<i>T</i> (K)	150(10)
Wavelength (Å)	1.54184
Crystal	monoclinic
Space group	P2 ₁ /n
<i>a</i> (Å)	37.0584(4)
b (Å)	24.8913(3)
<i>c</i> (Å)	37.1568(4)
a (°)	90
β (°)	93.1020(10)
γ (°)	90
V (Å ³)	34224.4(7)
Z	4
<i>D _{calc}</i> (mg m ⁻³)	3.517
μ (mm ⁻¹)	24.020
F (000)	31080.0
Crystal size (mm ³)	0.15 × 0.09 × 0.09
Goodness-of-fit on <i>F</i> ²	0.981
Final <i>R</i> indices	R ₁ = 0.0850
$[l > 2\sigma(I)]^{[a]}$	wR ₂ = 0.2057
R indices ^[a]	R ₁ = 0.1431
(all data)	wR ₂ = 0.2341

 $\label{eq:rescaled_$

S3 Structural representations

Figure S1. Mixed polyhedral/ball-and-stick representations of the central {Ta₁₂O₄₂ (HC₂O₄)} cluster in C_2O_4 -POM.

Figure S2. Ball-and-stick representation of C_2O_4 -POM, highlighting the coordination environment of Ta1 and the μ_2 -O (left) and a half of C_2O_4 -POM highlighting the coordination of Ta2 and Ta3 (right).

Figure S3. Ball-and-stick representation of 2D layer for C_2O_4 -POM.

S4 Bond valence calculations of the C_2O_4 -POM.

Table S2. Bond valence calculations of select O atoms of the $C_2O_4\mbox{-}POM.$

Atom	Bond	Distance/Å	Bond Valence	Bond Valence Sum (BVS)
01	O1-Ta3	1.935	0.960	0.170
01	O1-Ta4	1.847	1.218	2.178
00	O2-Ta11	1.870	1.145	0.400
02	O2-Ta8	1.906	1.039	2.183
	O3-Ta7	1.895	1.070	4 000
03	O3-Ta8	2.017	0.769	1.839
05	O5-Ta5	1.952	0.917	4.000
05	O5-Ta7	1.952	0.917	1.839
	O6-Ta5	1.994	0.819	
00	O6-Ta6	2.064	0.678	0.010
06	O6-Ta7	2.044	0.715	2.212
	O7-Ta6	2.026	0.751	
07	O7-Ta7	2.100	0.615	0.005
07	O7-Ta9	1.972	0.869	2.235
	O8-Ta4	1.921	0.997	4.005
08	O8-Ta5	1.956	0.907	1.905
	O9-Ta4	1.936	0.958	0.010
09	O9-Ta6	1.901	1.053	2.010
0.1.1	O11-Ta6	1.931	0.971	4 70 4
011	O11-Ta9	2.020	0.763	1.734
0.17	O17-C6	1.331	1.205	4 700
017	O17-Ta5	2.134	0.561	1.766
	O18-C5	1.350	1.145	. =
018	O18-Ta5	2.132	0.564	1.709
O19	O19-C6	1.278	1.391	1.391
O20	O20-C5	1.251	1.495	1.495
	O21-Ta2	1.966	0.883	
O21	O21-Ta12	1.948	0.927	1.810
	O22-Ta2	2.044	0.715	
	O22-Ta10	2.096	0.621	0.017
022	O22-Ta12	1.967	0.881	2.217
	O23-Ta1	1.892	1.079	4.074
023	O23-Ta10	2.006	0.793	1.871
	O24-Ta1	2.024	0.755	
004	O24-Ta2	2.071	0.665	0.010
024	O24-Ta10	2.006	0.793	2.212
0.05	O25-Ta10	1.918	1.005	4.044
025	O25-Ta11	1.985	0.839	1.844
	O26-Ta2	1.915	1.014	4.000
026	O26-Ta3	1.978	0.855	1.869
0.07	O27-Ta1	2.117	0.587	4 574
027	O27-C3	1.406	0.984	1.571
000	O28-Ta1	2.158	0.526	4 70 4
028	O28-C4	1.330	1.208	1.734
O29	O29-C4	1.328	1.215	1.215
O59	O59-C1	1.181	1.807	1.807
O89	O89-C3	1.235	1.562	1.562
000	O90-Ta12	2.163	0.519	4.004
090	O90-C7	1.291	1.343	1.861
001	O91-Ta12	2.227	0.436	4.000
091	O91-C8	1.314	1.262	1.698
0071/	O07X-Ta9	2.190	0.482	4 500
007X	O07X-C1	1.360	1.114	1.596
0000	O06B-Ta9	2.130	0.567	4 700
006B	O06B-C2	1.344	1.163	1.730
O92	O92-C8	1.272	1.413	1.413
094	O94-C7	1.362	1.108	1.108
000	O96-Ta3	1.866	1.157	4.000
096	O96 O96-Ta1 2.000 0.806	1.963		
O108	O108-C2	1.241	1.537	1.537

Atom	Bond	Distance/Å	Bond Valence	Bond Valence Sum (BVS)
	Ta1-O23	1.892	1.079	
-	Ta1-024	2.024	0.755	1
	Ta1-027	2.117	0.587	1
Ta1	Ta1-O28	2.158	0.526	5.258
	Ta1-O47	2.031	0.741	1
	Ta1-O48	2.019	0.765	1
	Ta1-O96	2.000	0.806	
	Ta2-O21	1.966	0.883	
	Ta2-O22	2.044	0.715	
	Ta2-O24	2.071	0.665	
Га2	Ta2-O26	1.915	1.014	5.233
	Ta2-O45	2.021	0.761	
	Ta2-O46	1.947	0.930	
	Ta2-O97	2.411	0.265	
	Ta3-O1	1.935	0.960	_
	Ta3-O26	1.978	0.855	_
	Ta3-O43	2.022	0.759	
з З _	Ta3-O44	1.986	0.837	5.129
	Ta3-O96	1.866	1.157	1
	Ta3-O97	2.134	0.561	
	Ta4-O1	1.847	1.218	1
	Ta4-08	1.921	0.997	
a4 🛛	Ta4-O9	1.936	0.958	5.204
	Ta4-O15	2.051	0.702	
	Ta4-O16	2.014	0.776	
	Ta4-O103	2.139	0.553	
	Ta5-O5	1.952	0.917	_
	Ta5-O6	1.994	0.819	_
	Ta5-08	1.956	0.907	
15	Ta5-O10	2.067	0.672	5.185
	Ta5-O14	2.029	0.745	_
_	Ta5-O17	2.134	0.561	_
	Ta5-O18	2.132	0.564	
	Ta6-O6	2.064	0.678	_
	Ta6-07	2.026	0.751	_
	Ta6-O9	1.901	1.053	
a6	Ta6-O11	1.931	0.971	5.169
	Ta6-O12	1.980	0.850	_
_	Ta6-O13	2.089	0.633	_
	Ta6-O103	2.459	0.233	
L	Ta7-O3	1.895	1.070	4
F	Ta7-05	1.952	0.917	4
	Ta7-06	2.044	0.715	
a/	Ta7-07	2.100	0.615	5.258
L	Ta7-038	1.955	0.910	4
F	Ta7-039	2.004	0.797	4
	Ta7-053	2.457	0.234	
	Ta8-02	1.906	1.039	4
. L	Ta8-03	2.017	0.769	4.000
a8	Ta8-04	1.914	1.016	4.960
L	Ta8-O40	2.018	0.767	4
F	Ta8-O41	1.993	0.821	4
	Ta8-053	2.143	0.547	
F	1a9-04	1.946	0.932	4
F	1a9-07	1.972	0.869	4
	1a9-011	2.020	0.763	E 400
аэ	1a9-036	2.004	0.797	5.182
F	1a9-037	2.016	0.771	4
F	1a9-006B	2.130	0.567	4
	1a9-007X	2.190	0.482	
F	Ia10-022	2.096	0.621	4
1	1a10-023	1 2.006	0.793	1

Table S3. Bond valence calculations of Ta atoms of the $C_2O_4\mbox{-}POM.$

	Ta10-O24	2.006	0.793	
Ta10	Ta10-O25	1.918	1.005	5.193
	Ta10-O31	1.909	1.030	
	Ta10-O32	2.041	0.721	
	Ta10-O105	2.465	0.229	
	Ta11-O2	1.870	1.145	
	Ta11-O25	1.985	0.839	
Ta11	Ta11-O30	1.899	1.058	5.530
	Ta11-O33	2.005	0.795	
	Ta11-O49	1.869	1.148	
	Ta11-O105	2.144	0.546	
	Ta12-O21	1.948	0.927	
	Ta12-O22	1.967	0.881	
	Ta12-O34	1.980	0.850	
Ta12	Ta12-O35	1.974	0.864	5.367
	Ta12-O49	1.963	0.890	
	Ta12-O90	2.163	0.519	
	Ta12-O91	2.227	0.436	

S5 Characterization of the C₂O₄-POM

The strong signal peak of C_2O_4 -POM at 1611 cm⁻¹ can refer to the stretching vibration of lattice water and coordination water molecules. The characteristic signal peaks of C_2O_4 -POM at 1085 cm⁻¹, 1026 cm⁻¹, 951 cm⁻¹, 901 cm⁻¹ and 760 cm⁻¹. It can be attributed to the stretching vibration of Vas(P-O_a), Vas(W-O_t), Vas(W-O_b-W), Vas(W-O_c-W) in Dawson type anions. 1405 cm⁻¹ and 1608 cm⁻¹ are attributed to symmetric and antisymmetric stretching vibrations of C=O, respectively.

Figure S5. The TGA curves of C_2O_4 -POM measured in N₂ from 25 °C to 800 °C.

Figure S6. Simulated (black) and as-synthesized (red) PXRD patterns of C_2O_4 -POM.

Figure S7. UV-vis absorption spectra of C_2O_4 -POM in acidic solution (pH = 2.5).

Figure S8. IR spectra of C_2O_4 -POM in acidic solution (pH = 2.5) and solid state.

Figure S9. Cyclic voltammogram of **C**₂**O**₄**-POM** in 0.1 M HCl (1.65 mM) at 10 mVs⁻¹. The working electrode was glassy carbon, counter electrode was platinum filament, and the reference electrode was Ag/AgCl.

S6 Characterization of Pd/(C₂O₄-POM)@rGO

Figure S10. IR spectra of Pd/(C₂O₄-POM)@rGO.

Figure S11. Raman spectra of GO and Pd/(C₂O₄-POM)@rGO.

Figure S12. XRD spectra of GO, Pd/(C₂O₄-POM)@rGO and Pd NPs.

Figure S13. XPS spectra of C 1s of GO.

Figure S14. SEM-EDX spectra and the elemental mapping of Pd, W and Ta for Pd/(C₂O₄-POM)@rGO.

Table S4. Binding energy and percentage of various components for $Pd/(C_2O_4-POM)@rGO$ before and after exposure to H_2 as determined by XPS analysis.

Sample	Sample Binding Energy/eV		
	before H ₂ exposure		
	36.2		
W ⁶⁺	38.3	100	
	after H ₂ exposure		
	34.7		
W ⁵⁺	36.8	73.2	
	33.8		
W ₀₊	31.8	26.8	
	before H ₂ exposure		
	335.3		
Pd ⁰	340.6	44.9	
	337.2		
Pd ²⁺	342.4	55.1	
	after H ₂ exposure		
	335.7		
Pd ⁰	340.9	100	
	before H ₂ exposure		
-OH	532.2	43.0	
-OH2	535.2	5.18	
O _{latt}	531.1	51.8	
after H ₂ exposure			
-OH	531.6	87.7	
-OH2	535.8	5.76	
O _{latt}	529.8	6.6	

^a Estimated based on the area of each pair of peaks

S7 Catalytic Hydrogenation of Olefins

Hydrogenation of Olefins : Catalysts were introduced in a reaction tube with a stirrer bar and sealed with a silicone septum. After replacing the air with Hydrogen, the substrate (0.2 mmol) and solvent (2 mL) were introduced in the tube. The reaction was performed at room temperature (r.t.) under H_2 (1 bar). Yields were determined by GC-MS. Solid reaction products were recovered by centrifugation and filtering to remove the catalyst, followed by rotary evaporation to remove the solvent.

Table S5. Optimization of the conditions for hydrogenation of olefins ^a.

	<u>^</u>	Catalyst			
		H ₂ (1 bar)			
		Solvent, rt			
Entry	Catalyst	Solvent	Time (min)	Yield (%)	
1	Pd/(C ₂ O ₄ -POM)@rGO	Ethanol	40	84	
2	Pd/(C ₂ O ₄ -POM)@rGO	Acetone	40	63	
3	Pd/(C ₂ O ₄ -POM)@rGO	Toluene	40	28	
4	Pd/(C ₂ O ₄ -POM)@rGO	Tetrahydrofuran	40	80	
5	Pd/(C ₂ O ₄ -POM)@rGO	Acetonitrile	40	99	

^aReaction condition: 0.2 mmol substrates, room temperature, 2 mL solvent, and 1 atm H₂ for 40 min, 4.8 mg $Pd/(C_2O_4-POM)@rGO$ catalyst (5 µmol Pd), Yields Were determined by GC-MS.

Figure S15. Comparison of the catalytic activity and Styrene hydrogenation conversion over time for Pd/(C₂O₄-POM)@rGO, Pd@rGO, Pd NPs. Reaction conditions: 0.2 mmol styrene, room temperature, 2 mL CH₃CN, and 1 atm H₂ for 40 min. Catalyst: 4.8 mg Pd/(C₂O₄-POM)@rGO Catalyst (5 μmol Pd), 4.2 mg Pd@rGO Catalyst (5 μmol Pd), 0.53 mg Pd NPs Catalyst (5 μmol Pd).

Entry	Substrate	Product	Yield(%)
1			>99%
2	O ₂ N	O ₂ N	>99%
3	0	0	>99%
4	H ₂ N	H ₂ N	>99%
5			>99%
6			>99%
7			>99%
8			>99%
9	F	F	>99%
10	F	F	>99%
11	CI	Cl	>99%
12	F F F	F F F	>99%
13			>99%

Table S6 Catalytic reaction of olefins derivatives by $Pd/(C_2O_4-POM)@rGO$.

Reaction condition: 4.8 mg Pd/(C₂O₄-POM)@rGO Catalyst (5 μ mol Pd), 0.2 mmol substrates, room temperature, 2 mL of CH₃CN solvent, and 1 atm H₂ for 1 h.

Figure S16. Recyclability of $Pd/(C_2O_4-POM)@rGO$ for the hydrogenation of olefins.

Figure S17. Powder XRD patterns of Pd/(C₂O₄-POM)@rGO before and after catalysis.

Figure S18. IR spectra of Pd/(C₂O₄-POM)@rGO before and after catalysis.

S8 Computational details

Density functional theory (DFT) calculations were performed using the Vienna ab initio package (VASP)⁸⁻¹¹ in virtue of the Perdew-Burke-Ernzerhof (PBE) formulation within the generalized gradient approximation (GGA)¹². The ion-electron interactions were modeled using the projector-augmented wave (PAW)¹³ method. A plane-wave basis was used to expand the Kohn–Sham orbitals, truncated at a kinetic energy of 400 eV. The dispersion-corrected vdW-D3 functional was considered to evaluate the van der Waals effect¹⁴. The convergence criteria were set to be 10⁻⁴ eV and 0.03 eV/Å for wavefunction and geometry optimization, respectively. The Brillouin zone integration is performed using 2 × 2 × 1 Monkhorst-Pack k-point sampling for a structure. Periodic images of the slab were separated by at least 15 Å vacuum gap. The electronic density of the structure was processed using VASPKIT¹⁵, and the density derived electrostatic and chemical (DDEC) charges and bond orders of the structure were calculated using the Chargemol software^{16,17}.

S9 References

- 1. S. Li, S. Liu, S. Liu, Y. Liu, Q. Tang, Z. Shi, S. Ouyang and J. Ye, {Ta₁₂}/{Ta₁₆} Cluster-Containing Polytantalotungstates with Remarkable Photocatalytic H₂ Evolution Activity, *J. Am. Chem. Soc.*, 2012, **134**, 19716-19721.
- M. Filowitz, R. K. C. Ho, W. G. Klemperer, and W. Shum, Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution, *Inorg. Chem.*, 1979, 18, 93-103.
- W. J. Randall, M. W. Droege, N. Mizuno, K. Nomiya, T. J. R. Weakley, R. G. Finke, Metal Complexes of the Lacunary Heteropolytungstates [B-α-PW₉O₃₄]⁹⁻ and [α-P₂W₁₅O₅₆]¹²⁻, *Inorg. Synth.*, 1997, **31**, 167-168.
- R. Liu, S. Li, X. Yu, G. Zhang, S. Zhang, J. Yao and L. Zhi, A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties, *J. Mater. Chem.*, 2012, 22, 3319-3322.
- K. Guo, L. J. Rowland, L. H. Isherwood, G. Glodan and A. Baidak, Photon-induced synthesis of ultrafine metal nanoparticles on graphene as electrocatalysts: impact of functionalization and doping, *J. Mater. Chem. A*, 2020, 8, 714-723.
- 6. G. Sheldrick, A short history of SHELX, Acta Crystallogr. Section A, 2008, 64, 112-122.
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 8. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 1993, 47, 558-561.

- 9. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, *Phys. Rev. B*, 1994, **49**, 14251-14269.
- G. Kresse, J. Furthmuller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B, 1996, 54, 11169–11186.
- 11.G. Kresse, J. Furthmuller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.*, 1996, **6**, 15–50.
- 12. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 13. G. Kresse, D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 14.K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, D. C. Langreth, Higher-accuracy van der waals density functional, *Phys. Rev. B*, 2010, **82**, 081101.
- 15. V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code, *Comput. Phys. Commun.*, 2021, **267**, 108033.
- 16.T. A. Manz, N. G. Limas, Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology, RSC. Adv., 2016, 6, 47771-47801.
- 17. T. A. Manz, Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders, *RSC Adv.*, 2017, **7**, 45552-45581.