Supplementary Materials

Large Ferroelectricity in $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ Polycrystalline Thin Films via Lattice Expansion

Hangren Li^{#, 1}; Jie Tu^{#, 1}; Guoqiang Xi^{#, 1}; Xiuqiao Liu¹; Xudong Liu¹; Siyuan Du¹;

Dongfei Lu¹; Da Zu²; Yuxuan Zhang³; Qingxiao Wang⁴; Dongxing Zheng⁵; Xixiang Zhang⁵; Jianjun Tian¹; Linxing Zhang^{1,*}

 Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China

2. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China

3. School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China.

4. Corelab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

5. Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

These authors contributed equally to this work.

SUPPLEMENTARY NOTES

1. Preparation of other thin films

To prepare the precursor, the required amount of cerium nitrate hexahydrate $(Ce(NO_3)_3-6H_2O, Aladdin, 99.95\%)$ and hafnium 2, 4-glutarate $(C_{20}H_{28}HfO_8, Kindo, 97\%)$ is dissolved in acetic acid, then 2, 4-pentanedione is added. A solution with a metal ion concentration of 0.1 mol/L is obtained, in which the ratio of acetic acid to 2, 4-pentanedione is 3:2. Finally, the mixed solvent was heated on a hot table at 75 °C for 2h to obtain a transparent precursor solution. In the preparation of Hf-Ce-O solid solution thin films, the precursor solution is spin coated on a $10 \times 10 \text{ mm}^2 \text{ Si/SiO}_2/\text{Ti/Pt}$ substrate and rotated at a high speed of 3500 rpm for 30 s. On the hot table, the water in the film was removed by heating at 120 °C for 3 min, and the organic solvent was removed by heating at 300 °C for 3 min. Once every 3 layers (total of 9 layers) for coating annealing treatment, then, using the hostler furnace respectively for Hf_(1.x)Ce_xO_{2- $\delta}$} (x = 0.6/0.9/0.12/0.15/0.18/0.21) under the 825 °C annealing, the annealing time about 20 min.

2. Effect of Pt electrode

XRD, XPS, STEM, and Raman measurements were tested without the presence of Pt electrode. The interfacial strain of the electrode can also affect the phase structure of HfO₂-based thin films [1]. However, the Pt electrode has the smaller surface tension than other common electrodes [2, 3]. In addition, the *P*-*E* loops of Hf_{0.85}Ce_{0.15}O_{2- δ} thin films with different thickness (Figure S4) suggest that the surface energy effect at the bottom interface (film/substrate) is not the key factor in O phase stability for the Ce substituted HfO₂ system. All the samples in this paper were tested for ferroelectric properties using Pt electrode, which indicates that the high remanent polarization of the T4 samples is indeed due to the stabilization of the O phase by the introduction of Ce elements and the dipole distortion caused by lattice expansion. Therefore, the interfacial strain introduced by the Pt electrode is not considered to be the key factor for the improvement of properties of Hf_{0.85}Ce_{0.15}O_{2- δ} thin films.

3. Impact of volume on the remanent polarization of HfO₂

In ferroelectrics, spontaneous polarization comes from the non-coincidence of positive and negative charge centers, so the value of spontaneous polarization is the sum of the product of charge (valence) and static displacement of each ion. However, in real crystals, the charge of the ion is often not the same as the valence, as the distribution of electron clouds of the same element in different crystals can vary. In order to accurately evaluate the charge of each HfO_2 ion, the processing method of Born effective charge is introduced, that is, the partial derivative of the electric dipole moment with respect to ion displacement is solved in the calculation, and the Born effective charge (Z*) is obtained. The results of the calculations are shown in Table S1-S15. The spontaneous polarization of HfO_2 crystals can be estimated by the formula (1-1) if the variation of polarization with ion displacement is approximated as a linear process.

$$P = \frac{e}{V} \sum_{i=1}^{m} Z_{i}^{*} \Delta u_{i} \qquad (1 - 1)$$

- P Spontaneous polarization of ferroelectrics (C/m²)
- *e* Unit charge number $(1.6 \times 10^{-19} \text{ C})$
- V Unit cell volume (m³)
- Z_{i}^{*} Born effective charge on the i-th atom
- Δ^{u_i} Ferroelectric shift of the i-th atom (m)

In this paper, we calculate the spontaneous polarization strength of HfO_2 using the *P*bca phase as a reference phase. The crystal structure of the ferroelectric *P*ca2₁ phase has a point group of *I*mm₂ and is asymmetric only along the z-axis, while the x-axis and y-axis are symmetric, so that changes in the x-axis and y-axis have little effect on the ferroelectric polarization value.

4. Role of Ce element

Consider equation (1-1), The main factors affecting the macroscopic ferroelectric polarization of ferroelectric thin films are the unit cell volume and the Born effective charge of the system. We choose Ce elements with high Born effective charges to stabilize the orthorhombic phase [4]. In addition, the relative ratios of oxygen vacancy

 (O_V) and lattice oxygen (O_L) as well as Ce³⁺ and Ce⁴⁺ in the HfO₂-based films can be effectively controlled by temperature to further control unit-cell volume [5]. Therefore, the introduction of the Ce element provides the dual effect of stabilizing the O-phase and the lattice expansion. Most reports still attribute improvements in ferroelectricity only to the size effects, crystallinity, and stability of the orthorhombic phase [6, 7], both experimental and theoretical studies. Our work provides a new way to break through the performance barrier of hafnium-based polycrystalline thin films.

5. DFT calculation

5.1 Phase stability calculation model

The calculations were carried out by building a $1 \times 1 \times 1$ unit cell using the Castepselected fictitious crystal approximation (*Mterials Studio 2019*), with Ce concentrations of 0/3/6/9/12/15/18/21 % in the C/O/T/M phase, respectively. The electron exchangecorrelation interactions were explained by the Generalised Gradient Approximation (GGA) [8], the electron exchange dependent interaction is explained by Perdew-Burke-Ernzerhof (PBE). The plane wave basis cut-off energy was determined to be 550 eV through convergence testing. A $3 \times 3 \times 3$ Monkhorst-Pack k-point grid was used. The energy is $1.0 \times e^{-5}$, with a maximum force of 0.03 eV/Å, a maximum stress of 0.05 GPa, and a maximum displacement of 0.001 Å.

5.2 Born effective charge calculation of ferroelectric polarization

The specific values of Born effective charge are obtained by running in the Castepselected fictitious crystal approximation (*Mterials Studio 2019*). The electron exchange-correlation interactions were explained by the GGA [8], the electron exchange dependent interaction is explained by PBE. A $3 \times 3 \times 3$ Monkhorst-Pack k-point grid was used. The convergence criterion for the energy change, maximum force, maximum stress, and maximum displacement was set to 750 eV, 10^{-5} eV/atom, 0.03 eV/ Å, 0.05 GPa, and 10^{-3} Å.

SUPPLEMENTARY FIGURES

1. DFT calculations of the effect of different concentrations of Ce-sites on the stability of the hafnium oxide phase.

Figure S1. DFT calculations were conducted to determine the phase stability of $Hf_{(1-x)}Ce_xO_{2-\delta}$ with varying Ce concentrations (x = 0/0.03/0.06/0.09/0.12/0.15/0.18/0.21).

The stability of the C/O/T phase compared to the M phase following Ce doping in HfO₂ was calculated using DFT. To investigate the stability of the doped HfO₂, we analyzed the change in relative energy ΔE_r for each phase. The calculation method used is defined (1-2). According to the calculations in Figure S1, the O phase is expected to exhibit higher stability at Ce = 15 %. Furthermore, this is consistent with the findings obtained from XRD and electric hysteresis loop measurements. Where, $E_{\xi(doped)}$ and $E_{\xi(pure)}$ represent the total energy of C/O/T phase with and without impurities, respectively.

$$\Delta E_{\rm r} = \frac{E_{\xi(\rm doped)} - E_{\rm m(\rm doped)}}{E_{\xi(\rm pure)} - E_{\rm m(\rm pure)}} (1 - 2)$$

2. Phase of $Hf_{1-x}Ce_xO_{2-\delta}$ (x = 0.6/0.9/0.12/0.15/0.18/0.21) thin films changes with varying Ce concentrations.

Figure S2. (a) XRD $Hf_{1-x}Ce_xO_{2-\delta}$ (x = 0.6/0.9/0.12/0.15/0.18/0.21). (b) and (c) XRD detail magnification.

XRD analysis reveals that the samples exhibit some M-phase content at the Ce concentration of 6 %. The characteristic peak of the M-phase disappears when the Ce content reaches 9 % or above. This suggests that the introduction of Ce has the potential to suppress M-phase production and encourage O-phase formation. Figures S2 (b) and (c) illustrate that with the increase in Ce content, there is a shift towards a smaller angle for (111)_O and (220)_O. This phenomenon occurs because Ce atoms have a larger radius than Hf atoms, leading to an increase in the volume of the entire unit-cell of the thin films. It is important to note that we use " \blacklozenge " to label diffraction peaks originating from the Pt/Ti/SiO₂/Si substrates. They come from the diffraction peak of Si (004) plane at ~ 33.19° from the Cu K_{α} X-ray diffraction with second harmonics (~ 0.77 Å), the diffraction peak of Pt (111) plane at ~ 46.9° from Cu K_{β} X-rays (~ 1.39 Å), the diffraction peak of Si (004) plane at ~ 46.9° from W $L_{\beta 2}$ X-rays (~ 1.24 Å). The peak of ~ 33.19° was sometimes absent, which might be due to the fact that vector superposition

of X-rays is difficult to occur in a common XRD diffractometer.

3. Typical *P-E* loops of $Hf_{1-x}Ce_xO_{2-\delta}$ (x = 0.6/0.9/0.12/0.15/0.18/0.21) thin films

Figure S3. Ferroelectric polarization for $Hf_{1-x}Ce_xO_{2-\delta}$ (*x* = 0.6/0.9/0.12/0.15/0.18/0.21) thin films.

Figure S3. illustrates the trend of sample P_r value as a function of increasing Ce doping concentration, with Ce of 15 % exhibiting the highest P_r value.

4. Typical *P-E* loops of Hf_{0.85}Ce_{0.15}O_{2-δ} (different thicknesses) thin films

Figure S4. Ferroelectric properties of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films with different layers. (a) 6 layers about 63 nm. (b) 9 layers about 95 nm. (c) 12 layers about 126 nm. (d) 15 layers about 158 nm. The layer means the spin-coating number in the preparation of the film.

Figure S4 shows the influence of P_r value of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films with thickness. The ferroelectric remanent polarization value of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films has no obvious dependence on thickness. This indicates the thickness with surface energy effect is not the key factor in O phase stability for present system. The reason of the remanent polarization enhancement is considered to be derived from the combined effect of the stabilization of the thin films O phase by the introduction of Ce elements and the increase of the dipole distortion.

5. Effect of temperature on ferroelectricity of Hf_{0.85}Ce_{0.15}O_{2-δ} thin films (T1-T5)

Figure S5. The ferroelectric properties of *P*-*E* loops of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films at different temperatures were determined at room temperature.

6. Phase images of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films (T1-T5) by PFM

Figure S6. Phase images of Hf_{0.85}Ce_{0.15}O_{2-δ} thin films. (a) T1. (b) T2. (c) T3. (d) T4.
(e) T5.

7. Amplitude information images of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films (T1-T5) by PFM

Figure S7. Amplitude images of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films. (a) T1. (b) T2. (c) T3. (d) T4. (e) T5.

8. PUND triangle wave type applied on $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films (T4)

Figure S8. Time versus triangular wave voltage curve in PUND mode.

9. Ferroelectric fatigue and leakage current test

Figure S9. (a) Ferroelectric fatigue test of T4 samples. We applied fatigue using a fatigue frequency of 100 kHz and a fatigue electric field of about 2 MV/cm, which is closed to twice the coercive field. As in the test of the ferroelectric hysteresis loops in the text, we read the *P*-*E* loops using a frequency of 10 kHz and an electric field of about 3 MV/cm. (b) Leakage current test of T4 samples.

10. Morphology of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films (T1-T5)

Figure S10. The SEM images for $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films. (a) T1. (b) T2. (c) T2. (d) T4. (e) T5. The sample's roughness increases gradually with temperature increase. With the increase of the preparation temperature, the number of pores on the ferroelectric thin films surface will increase (Figure S10d) [9]. This may cause the leakage current of the thin films to rise. The TEM cross-section analysis revealed there are some pores on the surface of the $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films while the pores inside the film are relative few (Figure 2d). In leakage current tests, T4 samples had small leakage that is only 10⁻⁷ A/cm² (Figure S9). This value also matches the leakage current reported (~ 10⁻⁷ A/cm²) in the previous paper [10]. This indicates that there are fewer internal defects in the thin films. Although there are some surface pores, they will have little impact on the use of future devices.

11. TEM of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films

Figure S11. The O-phase crystal plane spacing was measured by TEM. (a) Atomicscale HAADF-STEM images of $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films. (b) Corresponding FFT pattern of Figure S11 (a). (c) Standard FFT pattern of HfO_2 along the [110] direction by simulating. (d) Standard FFT pattern of HfO_2 along the [011] direction by simulating. (e, f, g) Interplanar spacing of O (111) (e), O (002) (f), and O (220) (g).

As shown in Fig. S11, the interplanar spacing of $(111)_0/(220)_0/(002)_0$ is 2.965 Å /1.840 Å/2638 Å, respectively. Since phase O [110] is similar to the diffraction spots of [011], it is impossible to determine which axial arrangement is based on the FFT arrangement. But we can find that in the standard HfO₂ diffraction spot in the [110] axial $(11\overline{3}) - (002) - (1\overline{1}1)$ angle is 71.33°, and in the [011] axial $(31\overline{1}) - (200) - (11\overline{1})$ angle is 68.36°. In our chosen area $(11\overline{3}) - (002) - (1\overline{1}1)$ has an angle of 71.48°, so we consider the region to be [110] axial.

12. High resolution O1s and Ce 3d XPS spectra for $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films (T2, T3, and T5).

Figure S12. High resolution XPS spectra of (a) T2, (b) T3, and T5 O 1*s* XPS spectra for $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films. (d) T2, (e) T3, and (f) T5 Ce 3*d* XPS spectra for $Hf_{0.85}Ce_{0.15}O_{2-\delta}$ thin films.

Element	Born Effective Charges			
Liement		x	у	Z
	x	-2.31245	-0.65657	0.25144
O1	У	-0.80245	-2.92394	-0.7594
	z	0.1667	-0.8019	-2.62735
	x	-2.41452	-0.26913	0.10436
02	у	-0.28531	-2.60219	0.46477
	z	0.11885	0.53252	-2.59385
	x	-2.31245	-0.6565	-0.2515
O3	у	-0.80243	-2.92387	0.75938
	z	-0.16676	0.80188	-2.62739
	x	-2.4145	-0.26914	-0.10436
O4	У	-0.28526	-2.60218	-0.46478
	z	-0.11883	-0.53252	-2.59386
	x	-2.31246	0.65653	0.25154
O5	у	0.8024	-2.92386	0.75933
	z	0.16681	0.80182	-2.62737
	x	-2.41455	0.26917	0.1044
O6	у	0.28533	-2.60221	-0.46478
	z	0.11885	-0.53254	-2.59388
	x	-2.31246	0.65655	-0.2515
07	у	0.80248	-2.92392	-0.75936
	z	-0.1668	-0.80187	-2.62734
	x	-2.41449	0.26911	-0.10435
08	У	0.28524	-2.60221	0.46481
	z	-0.11881	0.53258	-2.59386
	x	4.72698	-0.26028	-0.1434
Hf1	У	0.02895	5.52618	0.20101
	z	-0.06106	0.14643	5.22126
	x	4.72697	-0.26028	0.14338
Hf2	У	0.02895	5.5261	-0.20098
	z	0.06105	-0.14642	5.22123
	x	4.72696	0.26026	-0.14336
Hf3	У	-0.02894	5.52603	-0.20095
	Z	-0.06101	-0.14638	5.22121
1154	x	4.72696	0.26028	0.14336
ПI 1	У	-0.02896	5.52606	0.20094

Table S1. $Pca2_1$ of HfO₂ (a = 5.234 Å, b = 5.010 Å, c = 5.043 Å. $P_r \sim 49.28 \ \mu\text{C/cm}^2$)

 z	0.06102	0.14641	5.22122

Flement	Born Effective Charges				
Element		x	у	z	
	x	-2.41395	-0.8725	0.19909	
O1	у	-0.9558	-2.86695	-0.79248	
	Z	-0.0003	-0.78693	-2.92619	
	x	-2.41494	-0.8728	-0.19885	
O2	у	-0.95574	-2.86617	0.79164	
	Z	0.00065	0.78612	-2.92539	
	x	-2.41395	-0.8725	-0.19909	
O3	У	-0.9558	-2.86695	0.79248	
	Z	0.0003	0.78693	-2.92619	
	x	-2.41494	-0.8728	0.19885	
O4	У	-0.95574	-2.86617	-0.79164	
	Z	-0.00065	-0.78612	-2.92539	
	x	-2.41395	0.8725	0.19909	
O5	у	0.9558	-2.86695	0.79248	
	Z	-0.0003	0.78693	-2.92619	
	x	-2.41494	0.8728	-0.19885	
O6	У	0.95574	-2.86617	-0.79164	
	Z	0.00065	-0.78612	-2.92539	
	x	-2.41395	0.8725	-0.19909	
07	У	0.9558	-2.86695	-0.79248	
	Z	0.0003	-0.78693	-2.92619	
	x	-2.41494	0.8728	0.19885	
08	у	0.95574	-2.86617	0.79164	
	Z	-0.00065	0.78612	-2.92539	
	x	4.82889	-0.00048	-0.00047	
Hf1	У	0.00023	5.73311	0.28556	
	Z	-0.00004	0.42668	5.85158	
	x	4.82889	-0.00048	0.00047	
Hf2	У	0.00023	5.73311	-0.28556	
	Z	0.00004	-0.42668	5.85158	
	x	4.82889	0.00048	-0.00047	
Hf3	У	-0.00023	5.73311	-0.28556	
	Z	-0.00004	-0.42668	5.85158	
Hf4	x	4.82889	0.00048	0.00047	

Table S2. $Pca2_1$ of HfO₂ (a = 5.234 Å, b = 5.010 Å, c = 5.243 Å, $P_r \sim 51.54 \mu C/cm^2$)

 y	-0.00023	5.73311	0.28556
 Z	0.00004	0.42668	5.85158

Table S3. Pca2₁ of HfO₂ (a = 5.234 Å, b = 5.010 Å, c = 5.443 Å, $P_r \sim 57.47 \mu$ C/cm²)

Flomont		Born Effective Charges				
Element		x	у	z		
	x	-2.45928	-0.95149	0.20905		
O1	y	-1.05101	-2.80099	-0.72711		
	z	0.00463	-0.73131	-3.00603		
	x	-2.45773	-0.94976	-0.2092		
O2	y	-1.04805	-2.79963	0.72702		
	z	-0.00427	0.73073	-3.0088		
	x	-2.45928	-0.95149	-0.20905		
O3	y	-1.05101	-2.80099	0.72711		
	z	-0.00463	0.73131	-3.00603		
	x	-2.45773	-0.94976	0.2092		
O4	y	-1.04805	-2.79963	-0.72702		
	z	0.00427	-0.73073	-3.0088		
	x	-2.45928	0.95149	0.20905		
05	y	1.05101	-2.80099	0.72711		
	z	0.00463	0.73131	-3.00603		
	x	-2.45773	0.94976	-0.2092		
O6	y	1.04805	-2.79963	-0.72702		
	z	-0.00427	-0.73073	-3.0088		
	x	-2.45928	0.95149	-0.20905		
07	y	1.05101	-2.80099	-0.72711		
	z	-0.00463	-0.73131	-3.00603		
	x	-2.45773	0.94976	0.2092		
O8	y	1.04805	-2.79963	0.72702		
	z	0.00427	0.73073	-3.0088		
	x	4.91702	-0.00369	-0.00424		
Hf1	y	0.00205	5.60062	0.36147		
	z	-0.00118	0.56205	6.01484		
	x	4.91702	-0.00369	0.00424		
Hf2	y y	0.00205	5.60062	-0.36147		
	z	0.00118	-0.56205	6.01484		
	x	4.91702	0.00369	-0.00424		
Hf3	y y	-0.00205	5.60062	-0.36147		
	z	-0.00118	-0.56205	6.01484		

	x	4.91702	0.00369	0.00424
Hf4	У	-0.00205	5.60062	0.36147
	Z	0.00118	0.56205	6.01484

Table S4. Pca2₁ of HfO₂ (a = 5.234 Å, b = 5.010 Å, c = 5.643 Å, $P_r \sim 67.01 \ \mu\text{C/cm}^2$)

Floment	Born Effective Charges				
Element		x	у	z	
	x	-2.5147	-0.99573	0.22472	
O1	y	-1.1253	-2.71316	-0.6145	
	z	0.01955	-0.62756	-3.03957	
	x	-2.4797	-0.9648	-0.23043	
O2	у	-1.08165	-2.70317	0.63889	
	z	-0.01941	0.65537	-3.10112	
	x	-2.5147	-0.99573	-0.22472	
O3	У	-1.1253	-2.71316	0.6145	
	z	-0.01955	0.62756	-3.03957	
	x	-2.4797	-0.9648	0.23043	
O4	У	-1.08165	-2.70317	-0.63889	
	z	0.01941	-0.65537	-3.10112	
	x	-2.5147	0.99573	0.22472	
O5	У	1.1253	-2.71316	0.6145	
	z	0.01955	0.62756	-3.03957	
	x	-2.4797	0.9648	-0.23043	
O6	У	1.08165	-2.70317	-0.63889	
	z	-0.01941	-0.65537	-3.10112	
	x	-2.5147	0.99573	-0.22472	
O7	У	1.1253	-2.71316	-0.6145	
	z	-0.01955	-0.62756	-3.03957	
	x	-2.4797	0.9648	0.23043	
O8	У	1.08165	-2.70317	0.63889	
	z	0.01941	0.65537	-3.10112	
	x	4.9944	-0.01895	-0.00607	
Hf1	У	0.00065	5.41633	0.44407	
	z	-0.00664	0.70873	6.14069	
	x	4.9944	-0.01895	0.00607	
Hf2	y	0.00065	5.41633	-0.44407	
	z	0.00664	-0.70873	6.14069	
Цf3	x	4.9944	0.01895	-0.00607	
1113	y y	-0.00065	5.41633	-0.44407	

	z	-0.00664	-0.70873	6.14069
	x	4.9944	0.01895	0.00607
Hf4	у	-0.00065	5.41633	0.44407
	Z	0.00664	0.70873	6.14069

Table S5. $Pca2_1$ of HfO₂ (a = 5.334 Å, b = 5.010 Å, c = 5.043 Å, $P_r \sim 48.83 \ \mu\text{C/cm}^2$)

Element		Born Effective Charges				
		x	у	z		
	x	-2.39847	-0.81321	0.18195		
01	у	-0.86917	-2.88469	-0.82234		
	Z	-0.00356	-0.82383	-2.81847		
	x	-2.39867	-0.81321	-0.18277		
02	у	-0.869	-2.88429	0.82319		
	z	0.00319	0.82483	-2.8186		
	x	-2.39847	-0.81321	-0.18195		
O3	у	-0.86917	-2.88469	0.82234		
	z	0.00356	0.82383	-2.81847		
	x	-2.39867	-0.81321	0.18277		
O4	у	-0.869	-2.88429	-0.82319		
	Z	-0.00319	-0.82483	-2.8186		
05	x	-2.39847	0.81321	0.18195		
	У	0.86917	-2.88469	0.82234		
	z	-0.00356	0.82383	-2.81847		
	x	-2.39867	0.81321	-0.18277		
O6	У	0.869	-2.88429	-0.82319		
	z	0.00319	-0.82483	-2.8186		
	x	-2.39847	0.81321	-0.18195		
07	У	0.86917	-2.88469	-0.82234		
	z	0.00356	-0.82383	-2.81847		
	x	-2.39867	0.81321	0.18277		
08	У	0.869	-2.88429	0.82319		
	z	-0.00319	0.82483	-2.8186		
	x	4.79714	0.00085	0.00094		
Hf1	y	0.00037	5.76898	0.23128		
	z	0.00031	0.27844	5.63708		
	x	4.79714	0.00085	-0.00094		
Hf2	У	0.00037	5.76898	-0.23128		
	z	-0.00031	-0.27844	5.63708		
Hf3	x	4.79714	-0.00085	0.00094		

	У	-0.00037	5.76898	-0.23128
	Z	0.00031	-0.27844	5.63708
	x	4.79714	-0.00085	-0.00094
Hf4	у	-0.00037	5.76898	0.23128
	z	-0.00031	0.27844	5.63708

Element		Born Effective Charges				
Liement		x	у	z		
	x	-2.43275	-0.88597	0.18613		
O1	у	-0.93094	-2.87779	-0.82657		
	Z	-0.0152	-0.83362	-2.80523		
	x	-2.43062	-0.87752	-0.18354		
O2	у	-0.91922	-2.87416	0.8292		
	z	0.01576	0.8365	-2.81087		
	x	-2.43275	-0.88597	-0.18613		
O3	у	-0.93094	-2.87779	0.82657		
	z	0.0152	0.83362	-2.80523		
	x	-2.43062	-0.87752	0.18354		
O4	у	-0.91922	-2.87416	-0.8292		
	z	-0.01576	-0.8365	-2.81087		
	x	-2.43275	0.88597	0.18613		
05	у	0.93094	-2.87779	0.82657		
	z	-0.0152	0.83362	-2.80523		
	x	-2.43062	0.87752	-0.18354		
O6	У	0.91922	-2.87416	-0.8292		
	z	0.01576	-0.8365	-2.81087		
	x	-2.43275	0.88597	-0.18613		
07	у	0.93094	-2.87779	-0.82657		
	z	0.0152	-0.83362	-2.80523		
	x	-2.43062	0.87752	0.18354		
O8	у	0.91922	-2.87416	0.8292		
	z	-0.01576	0.8365	-2.81087		
	x	4.86338	-0.0067	-0.00979		
Hf1	У	0.00399	5.75195	0.22916		
	z	-0.00436	0.26061	5.6161		
	x	4.86338	-0.0067	0.00979		
Hf2	У	0.00399	5.75195	-0.22916		
	z	0.00436	-0.26061	5.6161		

 $\frac{\text{Table S6. } P \text{ca} 2_1 \text{ of HfO}_2 (a = 5.434 \text{ Å}, b = 5.010 \text{ Å}, c = 5.043 \text{ Å}, P_{\text{r}} \sim 47.93 \text{ } \mu\text{C/cm}^2)}{1000}$

Hf3	x	4.86338	0.0067	-0.00979
	у	-0.00399	5.75195	-0.22916
	Z	-0.00436	-0.26061	5.6161
	x	4.86338	0.0067	0.00979
Hf4	у	-0.00399	5.75195	0.22916
	z	0.00436	0.26061	5.6161

Element		Born Effective Charges			
		x	у	Z	
	x	-2.45396	-0.916	0.17932	
O1	У	-0.9476	-2.85824	-0.83401	
	z	-0.02481	-0.84622	-2.79825	
	x	-2.45614	-0.91736	-0.18003	
O2	У	-0.94849	-2.85817	0.83188	
	z	0.02445	0.84461	-2.7983	
	x	-2.45396	-0.916	-0.17932	
O3	У	-0.9476	-2.85824	0.83401	
	z	0.02481	0.84622	-2.79825	
	x	-2.45614	-0.91736	0.18003	
O4	У	-0.94849	-2.85817	-0.83188	
	z	-0.02445	-0.84461	-2.7983	
	x	-2.45396	0.916	0.17932	
O5	У	0.9476	-2.85824	0.83401	
	z	-0.02481	0.84622	-2.79825	
	x	-2.45614	0.91736	-0.18003	
O6	У	0.94849	-2.85817	-0.83188	
	z	0.02445	-0.84461	-2.7983	
	x	-2.45396	0.916	-0.17932	
07	У	0.9476	-2.85824	-0.83401	
	z	0.02481	-0.84622	-2.79825	
	x	-2.45614	0.91736	0.18003	
O8	y	0.94849	-2.85817	0.83188	
	z	-0.02445	0.84461	-2.7983	
	x	4.91009	0.00062	0.00109	
Hf1	y	0.00054	5.71641	0.21424	
	z	0.00051	0.23374	5.59654	
ЦÐ	x	4.91009	0.00062	-0.00109	
1112		0.00054	5 71 (41	0.21424	

0.00054

5.71641

-0.21424

y

	z	-0.00051	-0.23374	5.59654
	x	4.91009	-0.00062	0.00109
Hf3	у	-0.00054	5.71641	-0.21424
	z	0.00051	-0.23374	5.59654
	x	4.91009	-0.00062	-0.00109
Hf4	у	-0.00054	5.71641	0.21424
	z	-0.00051	0.23374	5.59654

Table S8. $Pca2_1$ of HfO₂ (a = 5.634 Å, b = 5.010 Å, c = 5.043 Å, $P_r \sim 47.09 \ \mu\text{C/cm}^2$)

Element		Born Effective Charges				
		x	Y	Z		
	x	-2.4646	-0.93657	0.17107		
O1	у	-0.95042	-2.84157	-0.84386		
	z	-0.0328	-0.8631	-2.78826		
	x	-2.46668	-0.94097	-0.16821		
02	у	-0.95899	-2.84409	0.84358		
	Z	0.03652	0.86156	-2.78417		
	x	-2.4646	-0.93657	-0.17107		
O3	У	-0.95042	-2.84157	0.84386		
	Z	0.0328	0.8631	-2.78826		
	x	-2.46668	-0.94097	0.16821		
O4	У	-0.95899	-2.84409	-0.84358		
	z	-0.03652	-0.86156	-2.78417		
	x	-2.4646	0.93657	0.17107		
O5	У	0.95042	-2.84157	0.84386		
	z	-0.0328	0.8631	-2.78826		
	x	-2.46668	0.94097	-0.16821		
O6	У	0.95899	-2.84409	-0.84358		
	z	0.03652	-0.86156	-2.78417		
	x	-2.4646	0.93657	-0.17107		
07	У	0.95042	-2.84157	-0.84386		
	z	0.0328	-0.8631	-2.78826		
	x	-2.46668	0.94097	0.16821		
08	У	0.95899	-2.84409	0.84358		
	Z	-0.03652	0.86156	-2.78417		
	x	4.93129	0.00131	0.00335		
Hf1	У	-0.00573	5.68566	0.19757		
	Z	0.00237	0.19964	5.57243		
ЦfЭ	x	4.93129	0.00131	-0.00335		
	У	-0.00573	5.68566	-0.19757		

	z	-0.00237	-0.19964	5.57243
	x	4.93129	-0.00131	0.00335
Hf3	у	0.00573	5.68566	-0.19757
	Z	0.00237	-0.19964	5.57243
	x	4.93129	-0.00131	-0.00335
Hf4	у	0.00573	5.68566	0.19757
	Z	-0.00237	0.19964	5.57243

Table S9. $Pca2_1$ of HfO₂ (a = 5.834 Å, b = 5.010 Å, c = 5.043 Å, $P_r \sim 45.27 \ \mu\text{C/cm}^2$)

Flomont	Born Effective Charges			
Element		x	Y	z
	x	-2.45931	-0.97383	0.14438
O1	у	-0.95399	-2.81628	-0.87227
	Z	-0.05706	-0.90549	-2.76457
	x	-2.45139	-0.96924	-0.14016
O2	У	-0.9527	-2.81873	0.88066
	Z	0.06007	0.91114	-2.76827
	x	-2.45931	-0.97383	-0.14438
O3	У	-0.95399	-2.81628	0.87227
	Z	0.05706	0.90549	-2.76457
	x	-2.45139	-0.96924	0.14016
O4	у	-0.9527	-2.81873	-0.88066
	Z	-0.06007	-0.91114	-2.76827
	x	-2.45931	0.97383	0.14438
O5	У	0.95399	-2.81628	0.87227
	z	-0.05706	0.90549	-2.76457
	x	-2.45139	0.96924	-0.14016
O6	У	0.9527	-2.81873	-0.88066
	Z	0.06007	-0.91114	-2.76827
	x	-2.45931	0.97383	-0.14438
07	У	0.95399	-2.81628	-0.87227
	Z	0.05706	-0.90549	-2.76457
	x	-2.45139	0.96924	0.14016
08	У	0.9527	-2.81873	0.88066
	z	-0.06007	0.91114	-2.76827
	x	4.9107	-0.00254	-0.00385
Hf1	У	-0.00445	5.63502	0.1668
	Z	-0.00154	0.12219	5.53284
	x	4.9107	-0.00254	0.00385
Hf2	У	-0.00445	5.63502	-0.1668
	z	0.00154	-0.12219	5.53284

Hf3	x	4.9107	0.00254	-0.00385
	у	0.00445	5.63502	-0.1668
	z	-0.00154	-0.12219	5.53284
Hf4	x	4.9107	0.00254	0.00385
	у	0.00445	5.63502	0.1668
	z	0.00154	0.12219	5.53284

Table S10. $Pca2_1$ of HfO₂ (a = 5.234 Å, b = 5.110 Å, c = 5.043 Å, $P_r \sim 48.25 \mu C/cm^2$)

Flomont	Born Effective Charges			
Element		x	Y	z
	x	-2.34869	-0.75865	0.19839
O1	У	-0.83928	-2.9426	-0.81367
	z	0.0094	-0.8111	-2.81128
	x	-2.3476	-0.75978	-0.19985
02	У	-0.84091	-2.94359	0.8145
	z	-0.01052	0.81165	-2.81025
	x	-2.34869	-0.75865	-0.19839
O3	У	-0.83928	-2.9426	0.81367
	z	-0.0094	0.8111	-2.81128
	x	-2.3476	-0.75978	0.19985
O4	У	-0.84091	-2.94359	-0.8145
	z	0.01052	-0.81165	-2.81025
	x	-2.34869	0.75865	0.19839
05	У	0.83928	-2.9426	0.81367
	z	0.0094	0.8111	-2.81128
	x	-2.3476	0.75978	-0.19985
O6	У	0.84091	-2.94359	-0.8145
	z	-0.01052	-0.81165	-2.81025
	x	-2.34869	0.75865	-0.19839
07	У	0.83928	-2.9426	-0.81367
	z	-0.0094	-0.8111	-2.81128
	x	-2.3476	0.75978	0.19985
08	У	0.84091	-2.94359	0.8145
	z	0.01052	0.81165	-2.81025
Hf1	x	4.69629	0.00146	0.00155
	У	-0.00004	5.88619	0.25652
	z	0.00062	0.26763	5.62153
	x	4.69629	0.00146	-0.00155
Hf2	у	-0.00004	5.88619	-0.25652
	z	-0.00062	-0.26763	5.62153
Hf3	x	4.69629	-0.00146	0.00155

	у	0.00004	5.88619	-0.25652
_	Z	0.00062	-0.26763	5.62153
	x	4.69629	-0.00146	-0.00155
Hf4	у	0.00004	5.88619	0.25652
	z	-0.00062	0.26763	5.62153

Element	Born Effective Charges			
Liement		x	У	Z
	x	-2.34759	-0.79536	0.23357
O1	У	-0.89811	-2.99327	-0.80672
	z	0.01469	-0.80212	-2.79922
	x	-2.34793	-0.79437	-0.23216
02	У	-0.89661	-2.99218	0.80623
	z	-0.01358	0.80173	-2.7992
	x	-2.34759	-0.79536	-0.23357
O3	У	-0.89811	-2.99327	0.80672
	z	-0.01469	0.80212	-2.79922
	x	-2.34793	-0.79437	0.23216
O4	У	-0.89661	-2.99218	-0.80623
	z	0.01358	-0.80173	-2.7992
	x	-2.34759	0.79536	0.23357
05	У	0.89811	-2.99327	0.80672
	z	0.01469	0.80212	-2.79922
	x	-2.34793	0.79437	-0.23216
O6	У	0.89661	-2.99218	-0.80623
	z	-0.01358	-0.80173	-2.7992
	x	-2.34759	0.79536	-0.23357
07	У	0.89811	-2.99327	-0.80672
	z	-0.01469	-0.80212	-2.79922
	x	-2.34793	0.79437	0.23216
08	У	0.89661	-2.99218	0.80623
	z	0.01358	0.80173	-2.7992
	x	4.69553	-0.00149	-0.00181
Hf1	y	0.0001	5.98545	0.28112
	z	-0.0007	0.25179	5.59842
	x	4.69553	-0.00149	0.00181
Hf2	y	0.0001	5.98545	-0.28112
	z	0.0007	-0.25179	5.59842

Hf3	x	4.69553	0.00149	-0.00181
	У	-0.0001	5.98545	-0.28112
	z	-0.0007	-0.25179	5.59842
	x	4.69553	0.00149	0.00181
Hf4	У	-0.0001	5.98545	0.28112
	z	0.0007	0.25179	5.59842

Element		Born Effective Charges			
Liement		x	у	z	
	x	-2.35443	-0.82291	0.26826	
01	y	-0.94939	-3.02865	-0.79043	
	z	0.01929	-0.7828	-2.79531	
	x	-2.3497	-0.82339	-0.27205	
O2	У	-0.95012	-3.03008	0.79067	
	z	-0.02283	0.78326	-2.7945	
	x	-2.35443	-0.82291	-0.26826	
O3	У	-0.94939	-3.02865	0.79043	
	z	-0.01929	0.7828	-2.79531	
	x	-2.3497	-0.82339	0.27205	
O4	У	-0.95012	-3.03008	-0.79067	
	z	0.02283	-0.78326	-2.7945	
	x	-2.35443	0.82291	0.26826	
O5	У	0.94939	-3.02865	0.79043	
	z	0.01929	0.7828	-2.79531	
	x	-2.3497	0.82339	-0.27205	
O6	У	0.95012	-3.03008	-0.79067	
	z	-0.02283	-0.78326	-2.7945	
	x	-2.35443	0.82291	-0.26826	
07	У	0.94939	-3.02865	-0.79043	
	z	-0.01929	-0.7828	-2.79531	
	x	-2.3497	0.82339	0.27205	
08	У	0.95012	-3.03008	0.79067	
	z	0.02283	0.78326	-2.7945	
	x	4.70413	0.00437	0.00524	
Hf1	y y	0.00085	6.05873	0.30483	
	z	0.00152	0.23288	5.58981	
Hf)	x	4.70413	0.00437	-0.00524	
Ht2	y	0.00085	6.05873	-0.30483	

Table S12. Pca2₁ of HfO₂ (a = 5.234 Å, b = 5.310 Å, c = 5.043 Å, $P_r \sim 47.14 \mu$ C/cm²)

		I		
	z	-0.00152	-0.23288	5.58981
	x	4.70413	-0.00437	0.00524
Hf3	у	-0.00085	6.05873	-0.30483
	z	0.00152	-0.23288	5.58981
	x	4.70413	-0.00437	-0.00524
Hf4	У	-0.00085	6.05873	0.30483
	z	-0.00152	0.23288	5.58981

Table S13. $P ca2_1$ of HfO₂ (a = 5.234 Å, b = 5.410 Å, c = 5.043 Å, $P_r \sim 46.60 \mu C/cm^2$)

Element	Born Effective Charges			
		x	У	Z
	x	-2.35779	-0.83804	0.31262
O1	У	-0.99162	-3.04803	-0.76701
	z	0.03273	-0.75563	-2.79922
	x	-2.36151	-0.84028	-0.3107
O2	У	-0.9941	-3.04682	0.7618
	z	-0.03086	0.75054	-2.79464
	x	-2.35779	-0.83804	-0.31262
O3	У	-0.99162	-3.04803	0.76701
	z	-0.03273	0.75563	-2.79922
	x	-2.36151	-0.84028	0.3107
O4	У	-0.9941	-3.04682	-0.7618
	z	0.03086	-0.75054	-2.79464
	x	-2.35779	0.83804	0.31262
O5	У	0.99162	-3.04803	0.76701
	z	0.03273	0.75563	-2.79922
	x	-2.36151	0.84028	-0.3107
O6	У	0.9941	-3.04682	-0.7618
	z	-0.03086	-0.75054	-2.79464
	x	-2.35779	0.83804	-0.31262
07	У	0.99162	-3.04803	-0.76701
	z	-0.03273	-0.75563	-2.79922
08	x	-2.36151	0.84028	0.3107
	У	0.9941	-3.04682	0.7618
	z	0.03086	0.75054	-2.79464
	x	4.7193	-0.00018	-0.00026
Hf1	y y	0.0001	6.09485	0.32346
	z	0.00053	0.21582	5.59386
Hf2		4.7193	-0.00018	0.00026

	у	0.0001	6.09485	-0.32346
	z	-0.00053	-0.21582	5.59386
	x	4.7193	0.00018	-0.00026
Hf3	у	-0.0001	6.09485	-0.32346
	z	0.00053	-0.21582	5.59386
	x	4.7193	0.00018	0.00026
Hf4	у	-0.0001	6.09485	0.32346
	z	-0.00053	0.21582	5.59386

Table S14. $Pca2_1$ of HfO₂ (a = 5.234 Å, b = 5.510 Å, c = 5.043 Å, $P_r \sim 47.14 \ \mu\text{C/cm}^2$)

Flement	Born Effective Charges			
Liement		x	у	z
	x	-2.37511	-0.85604	0.36303
O1	У	-1.0407	-3.03649	-0.72122
	z	0.04624	-0.70323	-2.8091
	x	-2.37419	-0.85573	-0.36746
O2	У	-1.03712	-3.03619	0.71776
	z	-0.05014	0.70181	-2.81131
	x	-2.37511	-0.85604	-0.36303
O3	У	-1.0407	-3.03649	0.72122
	z	-0.04624	0.70323	-2.8091
	x	-2.37419	-0.85573	0.36746
O4	У	-1.03712	-3.03619	-0.71776
	z	0.05014	-0.70181	-2.81131
	x	-2.37511	0.85604	0.36303
O5	У	1.0407	-3.03649	0.72122
	z	0.04624	0.70323	-2.8091
	x	-2.37419	0.85573	-0.36746
O6	У	1.03712	-3.03619	-0.71776
	z	-0.05014	-0.70181	-2.81131
	x	-2.37511	0.85604	-0.36303
07	У	1.0407	-3.03649	-0.72122
	z	-0.04624	-0.70323	-2.8091
O8	x	-2.37419	0.85573	0.36746
	y	1.03712	-3.03619	0.71776
	z	0.05014	0.70181	-2.81131
	x	4.7493	0.00232	0.00298
Hf1	у	0.00431	6.07267	0.34095
	z	0.00041	0.21164	5.62042

	x	4.7493	0.00232	-0.00298
Hf2	У	0.00431	6.07267	-0.34095
	z	-0.00041	-0.21164	5.62042
Hf3	x	4.7493	-0.00232	0.00298
	У	-0.00431	6.07267	-0.34095
	z	0.00041	-0.21164	5.62042
	x	4.7493	-0.00232	-0.00298
Hf4	У	-0.00431	6.07267	0.34095
	z	-0.00041	0.21164	5.62042

Table S15. Pca2₁ of HfO₂ (a = 5.234 Å, b = 5.610 Å, c = 5.043 Å, $P_r \sim 45.58 \mu$ C/cm²)

Element	Born Effective Charges			
Liement		x	у	Z
	x	-2.38186	-0.86693	0.4262
O1	у	-1.07334	-2.99538	-0.66141
	Z	0.06948	-0.63653	-2.83173
	x	-2.38185	-0.8669	-0.42547
02	У	-1.07368	-2.99532	0.66195
	Z	-0.06876	0.63703	-2.83115
	x	-2.38186	-0.86693	-0.4262
O3	у	-1.07334	-2.99538	0.66141
	Z	-0.06948	0.63653	-2.83173
	x	-2.38185	-0.8669	0.42547
O4	У	-1.07368	-2.99532	-0.66195
	Z	0.06876	-0.63703	-2.83115
	x	-2.38186	0.86693	0.4262
O5	У	1.07334	-2.99538	0.66141
	Z	0.06948	0.63653	-2.83173
	x	-2.38185	0.8669	-0.42547
O6	у	1.07368	-2.99532	-0.66195
	Z	-0.06876	-0.63703	-2.83115
	x	-2.38186	0.86693	-0.4262
07	у	1.07334	-2.99538	-0.66141
	Z	-0.06948	-0.63653	-2.83173
08	x	-2.38185	0.8669	0.42547
	У	1.07368	-2.99532	0.66195
	Z	0.06876	0.63703	-2.83115
TICI	x	4.76372	-0.00012	-0.00016
HII	у	-0.00048	5.9907	0.3517

	1			
	z	0.00001	0.22022	5.66287
	x	4.76372	-0.00012	0.00016
Hf2	у	-0.00048	5.9907	-0.3517
	Z	-0.00001	-0.22022	5.66287
Hf3	x	4.76372	0.00012	-0.00016
	у	0.00048	5.9907	-0.3517
	Z	0.00001	-0.22022	5.66287
	x	4.76372	0.00012	0.00016
Hf4	у	0.00048	5.9907	0.3517
	z	-0.00001	0.22022	5.66287

Table S16. $Pca2_1$ of HfO₂ (a = 5.2106 Å, b = 5.0074 Å, c = 5.276Å, $P_r \sim 60.76 \ \mu\text{C/cm}^2$)

Element	Born Effective Charges			
		x	у	Z
	x	-2.41491	-0.87936	0.2009
O1	у	-0.96718	-2.86333	-0.78509
	Z	0.00093	-0.77977	-2.94586
	x	-2.41533	-0.87965	-0.20075
02	у	-0.96749	-2.86296	0.78508
	z	-0.00069	0.77972	-2.94508
	x	-2.41491	-0.87936	-0.2009
O3	у	-0.96718	-2.86333	0.78509
	Z	-0.00093	0.77977	-2.94586
	x	-2.41533	-0.87965	0.20075
O4	у	-0.96749	-2.86296	-0.78508
	z	0.00069	-0.77972	-2.94508
	x	-2.41491	0.87936	0.2009
05	у	0.96718	-2.86333	0.78509
	z	0.00093	0.77977	-2.94586
	x	-2.41533	0.87965	-0.20075
O6	у	0.96749	-2.86296	-0.78508
	z	-0.00069	-0.77972	-2.94508
07	x	-2.41491	0.87936	-0.2009
	У	0.96718	-2.86333	-0.78509
	z	-0.00093	-0.77977	-2.94586
	x	-2.41533	0.87965	0.20075
08	У	0.96749	-2.86296	0.78508
	Z	0.00069	0.77972	-2.94508

	x	4.83024	0.00001	0.00005
Hf1	У	-0.00015	5.72629	0.29802
	z	0.00011	0.45391	5.89094
	x	4.83024	0.00001	-0.00005
Hf2	У	-0.00015	5.72629	-0.29802
	z	-0.00011	-0.45391	5.89094
Hf3	x	4.83024	-0.00001	0.00005
	У	0.00015	5.72629	-0.29802
	z	0.00011	-0.45391	5.89094
	x	4.83024	-0.00001	-0.00005
Hf4	у	0.00015	5.72629	0.29802
	z	-0.00011	0.45391	5.89094

References

[1] K. Liu, B. Dang, Z. Yang, T. Zhang, Z. Yang, J. Bai, Z. Pan. R. Huang, Y. Yang, Tuning the ferroelectricity of Hf_{0.5}Zr_{0.5}O₂ with alloy electrodes, Sci. China Inf. Sci. doi: 10.1007/s11432-023-3932-2.

[2] R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Q. Liu, M. Liu, Effects of capping electrode on ferroelectric properties of Hf_{0.5}Zr_{0.5}O₂ thin films, IEEE Electron. Device Lett. 2018, 39 (8), 1207-1210.

[3] P. Xu, S. Yan, Y. Zhu, J. Zang, P. Luo, G. Li, Q. Yang, Z. Chen, W. Zhang, X. Zheng, M. Tang, Effects of different metal electrodes on the ferroelectric properties of HZO thin films, J. Mater. Sci: Mater. Electron. 2023, 34 (28), 1915.

[4] T. Shiraishi, S. Choi, T. Kiguchi, T. Shimizu, H. Funakubo, T. J. Konno, Formation of the orthorhombic phase in CeO₂-HfO₂ solid solution epitaxial thin films and their ferroelectric properties, Appl, Phys, Lett. 2019, **114** (23), 232902.

[5] S. Zheng, Z. Zhao, Z. Liu, B Zeng, L. Yin, Q. Peng, M. Liao, Y. Zhou, Improvement of remanent polarization of CeO₂-HfO₂ solid solution thin films on Si substrates by chemical solution deposition, Appl, Phys, Lett. 2020, **117** (21), 212904.

[6] Y. Tian, Y. Zhou, M. Zhao, Y. Ouyang, X. Tao, Effect of Ce doping on ferroelectric HfO₂ from first-principles: Implications for ferroelectric thin films and phase regulation, Sol. Stat. Chem. 2023,

328, 124316.

[7] S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C.-H. Hsu, A. J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, S. Salahuddin, Enhanced ferroelectricity in ultrathin films grown directly on silicon, Nature, 2020, 580 (7804), 478-482.

[8] C. Lee, 1 E. Cho, H, Lee, C. Hwang, S. Han, First-principles study on doping and phase stability of HfO₂, Phys. Rev. B, 2008, 78, 012102.

[9] S. M. Park, S. G. Lee, S. E. Yun, Ferroelectric properties of Pb (Zr, Ti)O₃ films fabricated using a modified sol-gel based process, Thin Solid Films, 2008, 516, 5282-5286.

[10] M. Antik, K. L. Megan, E. B. Thomas, F. I. Jon, S. Nikhil, Oxygen vacancy contributions to the electrical stress response and endurance of ferroelectric hafnium zirconium oxide thin films, Appl, Phys, Lett. 2023, 122 (13), 132902.