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I. General Considerations

Unless otherwise specified, all manipulations were performed under an argon atmosphere
using standard Schlenk line or glove box techniques. Toluene, THF, diethyl ether, pentane, and
isooctane were dried and deoxygenated (by purging) using a solvent purification system and
stored over molecular sieves in an Ar-filled glove box. CsDe was dried over and distilled from
NaK/Ph,CO/18-crown-6 and stored over molecular sieves in an Argon-filled glove box. CDCls,
dichloromethane, and 1,2-dichlorobenzene were dried with and then distilled from CaH> and
stored over molecular sieves in Ar-filled glove box. All other chemicals were used as received
from commercial vendors. NMR spectra were recorded on a Bruker Avance Neo 400 (*H NMR,
399.535 MHz; *C NMR, 100.582 MHz; 3P NMR, 161.734 MHz), a Bruker Avance Neo 500
(*H NMR, 500.13 MHz; *C NMR, 125.77 MHz; 3P NMR, 202.45 MHz) and Varian Inova 500
(*H NMR, 499.703 MHz; *C NMR, 125.77 MHz) spectrometer. For *H and *3C NMR spectra,
the residual solvent peak was used as an internal reference. (*H NMR: § 7.16 for CeDs, 7.24 for
CDCls, 5.32 for CD:Cl,, 2.50 for (CD3)2SO; 3C NMR: § 128.06 for CsDe, 77.16 for CDCls,
53.84 for CD,Cly, 39.52 for (CD3).S0). *'P NMR spectra were referenced externally using 85%
HsPO4 at § 0 ppm. °F NMR spectra were referenced externally using CFsCOzH at -78.5 ppm.
1B NMR spectra were referenced externally using BFs+Et,O at 0 ppm. Electrochemical studies
were conducted using a CH Instruments Model 700 D Series. Electrochemical Analyzer and
Workstation in conjunction with a three electrode cell: the working electrode was a CHI 104
glassy carbon disk with a 3.0 mm diameter, the auxiliary electrode was composed of platinum
wire and the reference electrode, was a Ag/AgNOs electrode, which was prepared as a bulk
solution composed of 0.01 M AgNOs and 0.1 M [n-BusN][PFs] or 0.1 M [n-BusN][BArF24]* that
was made following a literature procedure in dichloromethane. A fine porosity frit was used for
separation from solution. CVs were conducted in dichloromethane with 0.1 M supporting
electrolyte and the scan rate is 100 mV/s. The concentration of the analyte solutions was
approximately 1 mM. CVs were referenced to ferrocene/ferrocenium redox couple as
recommended by IUPAC. 232 Ultraviolet-visible (UV-vis) spectra were collected on a UV-2450
UV-Vis spectrophotometer (Shimadzu, Japan).
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Il.  Synthesis of Compounds

Synthesis of bis(benzimidazolyl)methane (1). This synthesis was

C%;Mp modified from the published procedure.* In a 50 mL culture tube, 1,2-
H H diaminobenzene (1.00 g, 9.24 mmol) and malonamide (0.472 g, 4.62
mmol) were dissolved in 85% HzPO4 (5 mL). The reaction was stirred for 48 h at 150 °C and the

color of the mixture changed to a deep blue. 3M NaOH was added into the mixture to adjust the
pH to 7, changing the color to pink. The solution was then filtered through a Bulchner funnel and
the pink solid was collected on the filter paper. The pink solids were washed with water and
CH,Cly, then dried under vacuum, yielding the product as pink powder (1.13 g, 99% yield). H
NMR ((CD3)2S0, 400 MHz): & 12.49 (s, 2H, NH), 7.53 (dd, J = 3.2, 6.0 Hz, 4H, Ar-H), 7.17 (dd,
J =3.2, 6.0 Hz, 4H, Ph-H), 4.52 (s, 2H, CH2); BC{*H} NMR ((CD3).S0O, 125 MHz): § 150.3
(C=N), 143.2 (Ar), 134.5 (Ar), 121.5 (Ar, 2 overlapping signals), 118.2 (Ar), 111.3 (Ar), 29.5
(CH2).

Synthesis of (PNCNPP)H (2). In a Schlenk flask, 1 (4.50 g, 18.1
@\M,N@ mmol), CIPiPr2 (6.95 g, 43.5 mmol), and triethylamine (4.61 g, 43.5

N
\rp’ ,‘:,\( mmol) were combined and dissolved in THF. After stirring over night

the volatiles were removed in vacuo to give a pink solid. The pink solid was then redissolved in

at RT, the reaction mixture was filtered through a pad of Celite and

THF and layered with pentane in a 1:1 ratio and left in a -35 °C freezer overnight to recrystallize.
The precipitate was washed with cold pentane several times and further dried under vacuum to
yield a pink solid (8.53 g, 98% yield, >95% pure by *H NMR spectroscopy). 3:P{*H} NMR
(CeDs, 202 MHz): & 68.2 (s); *H NMR (CsDs, 400 MHz): § 7.91 (d, J = 7.7 Hz, 2H, Ar-H), 7.37
(d, J=7.9Hz, 2H, Ar-H), 7.17 (t, J = 7.2 Hz, 2H, Ar-H), 7.13 (t, J = 7.3 Hz, 2H, Ar-H), 5.21 (s,
CHy), 2.48 (m, 4H, CHMe), 0.89 (dd, J = 6.9, 18.4, 12H, CH(CHs3)2), 0.77 (9, J = 7.1 Hz, 12 H,
CH(CHsa)2); BC{*H} NMR (CsDs¢, 125 MHz): & 158.0 (dd, Jpi-c = 20.3 Hz, Jp2c = 2.3 Hz, C=N),
146.0 (s, Ar), 137.9 (d, Jrc = 9.8 Hz, Ar), 122.7 (s, Ar), 122.5 (s, Ar), 120.8 (s, Ar), 113.1 (s,
Ar), 31.8 (t, Jp-c = 17.4 Hz, CHy), 26.2 (d, Jrc = 14.3 Hz, CHMey), 20.0 (d, Jp-c = 10.5 Hz,
CHMey), 20.0 (d, Jrc = 29.8 Hz, CHMey).
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Clo Synthesis of ("PNCNPP"PACIsHCI (3-Pd). In a 50 mL Schlenk tube,
N~ HN’@ 2 (3.79 g, 7.88 mmol), Pd(COD)Cl> (2.25 g, 7.88 mmol) were
} N = N /4 dissolved in a minimum amount of 1,2-dichlorobenzene under argon.
ﬂ & % The reaction mixture was stirred overnight at around 180 °C. The

yellow mixture was diluted with CH.Cl, and filtered, with the
resultant filtrate layered with pentane in a 1:1 ratio and then placed in a -35 °C freezer. The
precipitate formed overnight was washed with cold pentane several times and further dried under
vacuum to yield a yellow solid (4.67 g, 90%) that was 97% pure by 3P{*H} and H NMR
spectroscopy. *P{*H} NMR (CDCls, 162 MHz): § 110.7k (s); *H NMR (CDCls, 400 MHz): &
13.60 (s, 2H, NH), 7.68 (d, J = 8.1 Hz, 2H, Ar-H), 7.20 (td, J = 7.2 Hz, 2 Hz, 2H, Ar-H), 7.13-
7.08 (4H, Ar-H), 3.04 (m, 4H, CHMe3), 1.58 (dvt, J = 8.0 Hz, 12 H, CHMe), 1.33 (dvt, J = 8.0
Hz, 12 H, CHMe2). *C{*H} NMR (CDCls3, 100 MHz): § 161.5 (vt, Jp-c = 17.5 Hz, C=N), 139.9
(s, Ar), 130.1 (vt, Jpc = 2.3 Hz, Ar), 124.6 (s, Ar), 122.9 (s, Ar), 113.5 (s, Ar), 110.6 (s, Ar),
70.2 (s, Pd-C), 27.8 (vt, Jrc = 10.4 Hz, CHMey), 19.2 (s, CHMe), 18.2 (vt, Jp.c = 3.5 Hz,
CHMey).

o Synthesis of ("PNCNPP")PtCI*HCI (3-Pt). In a 50 mL Schlenk tube,
2 (416 mg, 0.866 mmol) and Pt(COD)ClI> (324 mg, 0.866 mmol) were
N N dissolved in 30 mL of toluene. The reaction mixture was stirred for 48
)\F;———pltf—l\D/( h at 120 °C. The yellow mixture was then filtered through a pad of
AQ cl >7 Celite with the help of additional CHCl,. The volatiles were removed
under vacuum from the filtrate to yield a yellow powder that was dissolved in CHCl, and

layered with pentane in a 1:2 ratio and then left in a -35 °C freezer. The yellow precipitate
formed overnight was washed with cold pentane several times and further dried under vacuum to
yield a yellow solid (490 mg, 76% vyield) that was 95% pure by 3P{*H} and 'H NMR
spectroscopy. *P{*H} NMR (CDCls, 202 MHz): § 102.6 (s, Jpt-p = 3077.3 Hz); *H NMR (CDCls,
400 MHz): § 13.66 (s, 2H, NH), 7.66 (d, J = 7.7 Hz, 2H, Ar-H), 7.20 (t, J = 7.5 Hz, 2H, Ar-H),
7.16-7.09 (m, 4H, Ar-H), 3.23 (m, 4H, CHMe), 1.57 (m, 12 H, CHMey), 1.29 (m, 12 H,
CHMe,). ¥C{*H} NMR (CDCls3, 100 MHz): § 161.4 (vt, Jp.c = 15.2 Hz, C=N), 139.8 (Ar), 130.1
(Ar), 124.5 (Ar), 122.8 (Ar), 113.6 (Ar), 110.4 (Ar), 59.4 (t, Jp-c = 5.1 Hz, Pt-C), 28.3 (vt, Jp-c =
14.2 Hz, CHMe), 19.0 (CHMe), 17.8 (vt, Jp-c = 3.0 Hz, CHMey).
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Synthesis of (HPNCNPPM)PACI (4-Pd). In a 25 mL Teflon stoppered Schlenk flask with a stir
bar, 2 (185 mg, 0.385 mmol), Pd(COD)CI> (99.5 mg 0.350 mmol), and EtsN (100 pL, 0.70
mmol) were dissolved in ca. 10 mL of toluene. The reaction mixture was stirred for 12 h at 120
°C. The resulting orange mixture was filtered through a pad of Celite and the volatiles were
removed in vacuo from the filtrate. The remaining orange solid was redissolved in THF and this
solution was layered with pentane in a 1:1 ratio and then placed in a -35 °C freezer overnight.
The precipitate appeared to consist of two different solids: a fine orange powder and red crystals.
This precipitate was washed with pentane (3 x 5 mL) then dried under vacuum (194 mg, 90%
yield). Upon dissolution in CeDs the 4a-Pd: 4b-Pd ratio was 95:5. Anal. Calcd for
C27H37CIN4P2Pd: C: 52.18; H: 6.00; N: 9.02. Found: C: 51.92; H: 5.79; N: 8.95.

Data for 4a-Pd: 31P{*H} NMR (C¢Ds, 202 MHz): 5 108.4 (s), H
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NMR (CeDs, 400 MHz): § 10.23 (br s, NH, 1H), 6.94 (m, Ar-H, 4H),
6.82 (t, J = 8.0 Hz, Ar-H, 2H), 6.71 (d, J = 8.2 Hz, Ar-H, 2H), 2.56
(M, (CHa)2CH, 4H), 1.45 (m, (CHs)2CH, 12H), 1.04 (m, (CHs)2CH,

12H); BC{*H} NMR (CeDs, 100 MHz): & 166.3 (C=N), 147.2 (Ar), 133.3 (Ar), 123.0 (Ar),
120.3 (Ar), 113.5 (Ar), 110.2 (Ar), 75.2 (Pd-C), 27.7 (vt, Jcp = 11.0 Hz, CH(CHs)2), 18.9
(CH(CHa3)2), 18.4 (t, Jc_p= 3.8 Hz, CH(CH3)2). 3'P{*H} NMR (CDCls, 202 MHz): & 108.9 (s).
13C{*H} NMR (CDCls, 100 MHz): & Resonances for the arenes of 4a-Pd could not be seen at the
achievable concentration, 68.0 (Pd-C), 27.1 (vt, Jcr = 11.8 Hz, CH(CHa)2), 18.3 (s, CH(CHa)2),
17.4 (s, CH(CHs).). Total concentration of Pd in solution for the CDCl3 solution was 50 mM and
ca. 8 mM for 4a-Pd.

sy

Data for 4b-Pd: 3'P{*H} NMR (CsDs, 202 MHz): 5 93.1 (s), 'H NMR

(CeDs, 400 MHz): 6 7.93 (br s, Ar-H, 2H), Other aryl peaks overlap
)\F[’\I—&—Pd/-—i[\\;”k with 4a-Pd in solution, 5.74 (s, a-CH, 1H), 2.73 (m, (CH3).CH, 2H),
— ¢ >~ 237 (m, (CHg)2CH, 2H), 1.35 (m, (CHs)}.CH, 12H), 0.90 (m,
(CH3)2CH, overlaps with residual pentane). The achievable concentration of 4b-Pd in Ce¢Ds

solution was not sufficient to observe its resonances in the *C{*H} NMR spectrum. 3P{‘H}
NMR (CDCls, 202 MHz ): 8 93.1 (s). *C{*H} NMR (CDCls, 100 MHz): 5 166.2 (v, Je.p= 12.7
Hz, C=N), 150.9 (Ar), 137.9 (Ar), 123.31 (Ar), 122.9 (Ar), 122.0 (Ar), 111.6 (Ar), 45.9 (Pd-C),
28.2 (vt, Jc-p = 10.1 Hz, CH(CHz3)2), 19.1 (m, CH(CHz)2 Overlaps with other methyl of the
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isopropyl arm), 18.8 (CH(CHs). Overlaps with other methyl of the isopropyl arm). Total
concentration of Pd in solution for the C¢Ds solution is ca. 50 mM and for 4b-Pd is ca. 3 mM.
Tautomer equilibrium experiment with 4-Pd. 4-Pd (61.4 mg, 0.098 mmol) was added to a J.
Young tube, dissolved in 625 L of toluene-ds and analyzed by 3'P NMR spectroscopy (Fig S1).
The ratio was found to be 91% 4a-Pd and 9% 4b-Pd. The volatiles were removed from this
solution under vacuum, and the residue was then redissolved in 625 uL CDCls. Analysis by 3!P
NMR spectroscopy revealed the ratio of 15% 4a-Pd to 85% 4b-Pd. The volatiles were removed
from this solution under vacuum, and the residue was then redissolved in 625 pL toluene-ds
Analysis by 3P NMR spectroscopy revealed the ratio returned to favor 4a-Pd with 90% 4a-Pd
to 10% 4b-Pd.

oy b s BaY
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Figure S1. 3P{*H} NMR (202 MHz) spectra of the mixture of 4a-Pd and 4b-Pd in toluene-ds

and in CDCla.

Synthesis of (FPNCNPPIPtCI (4-Pt). In a 25 mL Schlenk flask with
| a stir bar, 3-Pt (150 mg, 0.201 mmol) and EtsN (42 pL, 0.301 mmol)

N Z N
)\ ; ‘F,/k were dissolved in 10 mL of toluene in the dark. The reaction mixture
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was stirred for 12 h at room temperature. The resulting yellow
| r\f mixture was filtered through a pad of Celite and the volatiles were
)\FI,'\I__P,(_#I\‘;,/A removed in vacuo from the filtrate. The resultant yellow solid was
Cl )\ redissolved in toluene, layered with pentane in a 1:2 ratio, and then

left in a -35 °C freezer overnight. The resultant yellow solid was washed with pentane and then
dried under vacuum (199 mg, 82% yield). Only 4a-Pt was observed when the product was
dissolved in CsDe. When CDClI3 was used to dissolve 4-Pt, both 4a-Pt and 4b-Pt were observed
by NMR spectroscopy in a 53:47 ratio. Anal. Calcd for Cz7H37CIN4P2Pd: C: 45.67; H: 5.25; N:
7.89. Found: C: 46.28; H: 5.37; N: 7.18. Data for 4a-Pt: 3'P{*H} NMR (CsDs, 162 MHz): 98.9
(s, Jrep = 3184.0 Hz); 'H NMR (CsDs, 400 MHz): § 9.90 (br s, NH, 1H), 6.95 (d J = 7.9 Hz, Ar-
H, 4H), 6.83 (m, Ar-H, 2H), 6.73 (d J = 7.9 Hz, Ar-H, 2H), 2.76, (m, (CH3).CH, 4H), 1.45 (m,
(CH3)2CH, 12H), 1.03 (m, (CH3)2CH, 12H). *C{*H} NMR (CeDs, 125 MHz): 165.5 (C=N),
147.3 (Ar), 133.3 (Ar), 122.9 (Ar), 120.3 (Ar), 113.7 (Ar), 110.0 (Ar), 64.0 (Pt-C), 28.3 (t, Jcr =
14.7 Hz, CH(CHa)2), 18.7 ((CH3)2CH), 17.9 ((CH3).CH). 3P{*H} NMR (CDCls, 202 MHz):
100.9 ppm (s, Jpep = 3177.5 Hz, 53%). *H NMR (CDCls, 500 MHz): 10.02 (br s, NH, 1H). Data
for 4b-Pt: 3'P{*H} NMR (CDCls, 202 MHz): 90.3 ppm (s, Jetr = 3048.2 Hz, 47%). '*H NMR
(CDCl3, 500 MHz): Resonances for the arene peaks overlap with 4a-Pt. 5.51 (s, Jpt.p = 155.3 Hz,
a-CH, 1H). Resonances for the isopropyl arms overlap with 4a-Pt.
Synthesis of (FPNCNPPIPdI (5-Pd). 4-Pd (581 mg, 0.935 mmol)
Q:%N\NH\ I\;/N@ was added to a 50 mL Schlenk flask and dissolved in ca. 20 mL of
)\P’—ﬁpdf—l‘:"{ toluene and MesSil (200 pL, 1.40 mmol) was then added to the
i >7 solution. The mixture was allowed to stir for 12 h before the volatiles

were removed in vacuo. The yellow solid was dissolved in THF and recrystallized by layering in
a 1:1 fashion with pentane. The solid was washed with pentane and dried under vacuum (554
mg, 82% yield). Data for 5a: *!P{*H} NMR (CDCl3 202 MHz): § 114.6; *H NMR (CDCls, 400
MHz): § 12.06 (br s, NH, 1H), 7.95 (d, J = 7.7 Hz, Ar-H, 2H), 7.17 (m, Ar-H, 6H overlaps with
solvent peak), 3.12 (m, CH(CHz3)2, 4H), 1.57 (dvt, J = 10.2 Hz, CH(CH3)2), 1.32 (dvt, J = 8.2 Hz,
CH(CHa)2; BC{*H} NMR (CDCls, 100 MHz): & 160.9 (vt, Jp.c = 17.5 Hz, C=N), 139.5 (Ar),
130.0 (t, J= 2.4 Hz, Ar), 124.6 (Ar), 123.1 (Ar), 113.6 (Ar), 111.2 (Ar), 68.0 (Pd-C), 28.4 (vt, Jp-
c=11.2 Hz, CHMey), 19.3 (vt, Jp.c = 2.8 Hz CHMey). 19.2 (CHMey). 3P{*H} NMR (C7Dsg, 202
MHz): 6 118.2 (s).
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Q @ $1p{1H} NMR (C7Dg, 202 MHz): § 97.8 (s).
N N
A

N

S

Tautomer equilibrium experiment with compound 5-Pd.

Compound 5-Pd (78 mg, 0.110 mmol) was added to a J. Young tube, dissolved in 625 pL of
toluene-ds and analyzed by 3P NMR spectroscopy (Fig S2. 1). The only tautomer in solution
was determined by 3P NMR spectroscopy to be 5a-Pd. The volatiles were removed from this
solution under vacuum, and the residue was then redissolved in 625 pL CDCls. Analysis by 3!P
NMR spectroscopy revealed the ratio favored 5b-Pd as the major tautomer (56%) and 5a-Pd
being the minor tautomer (44%). The volatiles were removed from this solution under vacuum,
and the residue was then redissolved in 625 pL toluene-ds. Analysis by 3P NMR spectroscopy

revealed the composition returned to 5a-Pd only.
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Figure S2. 3'P{*H} NMR (202 MHz) spectra of the mixture of 5a and 5b in CDCls and in
toluene-ds.

[THF], Synthesis of ({'PNCNPPT)PACIs2THF (6-Pd). In a 50 mL Schlenk

/|_|i\ flask, HN(SiMes)2 (120 pL, 0.573 mmol) was dissolved in ca. 20 mL

NN of THF, then "BuLi (200 pL, 0.500 mmol) was added. The mixture
)\é‘fﬁd/_}_ﬁ;/& was allowed to stir for 2 h. 4-Pd (194 mg, 0.312 mmol) was added to
& >7 the mixture and it was stirred for 12 h. The mixture was then filtered

through a pad of Celite and the volatiles were removed in vacuo from
the filtrate to yield a brown solid. It was recrystallized by dissolving in minimal THF (ca. 2 mL),
layering with 5 mL of pentane, and placing it in a -35 °C freezer overnight to give a brown
powder. The supernatant was decanted from the brown powder which was then washed with
pentane (3 x 10 mL) and dried. (192 mg, 80% yield) 3!P{*H} NMR (CsDs, 202 MHz): § 99.1 (s);
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'H NMR (CsDg, 400 MHz): § 7.39 (d, J = 7.6 Hz, 2H, Ar-H), 7.16 (br s, 2H, Ar-H), 6.86 (br s,
4H, Ar-H), 3.58 (br s, 8H, OCH2), 2.74 (m, 4H, CHMey), 1.28 (br s, 8H, CH>CH>), 1.53 (m,
12H, CH(CHz3)2), 1.18 (m, 12H, CH(CHs3),). 3C{*H} NMR (CsDs, 100 MHz): § 172.2 (vt, Jp.c =
16.1 Hz, C=N), 152.6 (Ar), 133.1 (vt, Jrc = 2.3 Hz, Ar), 120.1 (Ar), 115.5 (Ar), 111.4 (Ar),
107.4 (Ar), 76.6 (Pd-C), 66.3 (OCH2CH?>), 25.5 (vt, Jp.c = 11.3 Hz, CHMe,), 23.5 (s, CH2CH20),
17.2 (s, CHMey), 18.2 (vt, Jp-c = 3.8 Hz, CHMey).
Chloride Test of 6-Pd: Compound 6-Pd (14 mg, 0.018 mmol) was dissolved in 600 uL of CeDs
in a J. Young tube, and then MesSil (5 pL, 0.035 mmol) was added to it. The solution was
allowed to age for 30 min before the reaction mixture was analyzed by NMR spectroscopy,
which evinced the formation of one equivalent of MesSiCl.
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Figure S3. 'H NMR (400 MHz, CsDs) NMR spectrum of the reaction between 6-Pd and MesSil
after 30 min.

[THF], Synthesis of (HPNCNPPT)PtCIe2THF (6-Pt). In a 50 mL Schlenk

Lli flask, HN(SiMes)2 (50 pL, 0.240 mmol) was dissolved in ca. 20 mL
/N
N

|

A
)_\( Ztl >J,\ s11




of THF, then "BuLi (90 uL, 0.225 mmol) was added. The mixture was allowed to stir for 2 h. 4-
Pt (100 mg, 0.141 mmol) was added to the mixture and it was stirred for 12 h in the dark. The
mixture was then filtered through a pad of Celite and the volatiles were removed in vacuo to
yield a brown solid. The brown solid was redissolved in minimal THF (ca. 2 mL), then layered
with 8 mL of pentane, and placed in a -35 °C freezer overnight to give a brown powder. The
supernatant was decanted from the brown solid which was then washed with pentane (3 x 10
mL) and dried to give 84 mg (69%). *P{*H} NMR (C¢Ds, 162 MHz): & 92.9 (s, Jp-pt = 3214.1
Hz); 'H NMR (C¢Ds, 400 MHz): § 7.22 (s, 2H, Ar-H), 6.90 (s, 4H, Ar-H), 3.57 (br s, 8H, OCHy),
2.57 (s, 4H, CHMe), 1.56 (s, 12 H, CH(CHzs)2), 1.26 (s, CH2CHz, 8H), 1.16 (s, 12 H,
CH(CHs)2). ®*C{*H} NMR (CsDg, 100 MHz): 173.2 (C=N), 154.5 (Ar), 135.2 (Ar), 122.1 (Ar),
117.6 (Ar), 113.4 (Ar), 109.3 (Ar), 68.4 (OCHy), 64.9 (Pt-C), 28.2 (t, J = 13.8 Hz, CH(CHz3)2),
25.4 (OCH2CHy>), 19.0 (CH(CH3)2), 18.3 (CH(CHsa)z).

Chloride Test of 6-Pt: Compound 6-Pd (14 mg, 0.018 mmol) was dissolved in 600 pL of CeDs
in a J. Young tube, and then MesSil (5 pL, 0.035 mmol) was added to it. The solution was
allowed to age for 30 min before the reaction mixture was analyzed by NMR spectroscopy. By
'H NMR analysis, 1 equivalent of MesSiCl was formed from the 2 equivalents of MesSil added

to the reaction.
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Figure S4. *H NMR (500 MHz, CsDs) NMR spectrum of the reaction between 6-Pt and MesSil
after 30 min.
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Synthesis of (BF:-PNCNPP")PdCI (7-Pd). 6-Pd (192 mg, 0.306 mmol)
QN/B\N,Q was added to a 50 mL Schlenk flask and dissolved in ca. 20 mL of

N7 ! N toluene, then BF3*OEt> (52 pL, 0.428 mmol) was added to give a
)\ﬁ——-Pd-——l‘}l{ yellow solution. The solution was stirred for 16 h. The solution was

%

the filtrate in vacuo to yield a yellow solid. The yellow solid was then recrystallized by

then filtered through a pad of Celite. The volatiles were removed from

dissolving in toluene, layering with pentane in a 1:1 ratio, and placing in a freezer at -35 °C
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overnight. The resulting yellow solid was washed with pentane and dried (111 mg, 54%).
31IP{*H} NMR (C¢Dg, 202 MHz): & 124.4 (s). *H NMR (CsDs, 400 MHz): § 7.97 (d, J = 7.9 Hz,
2H, Ar-H), 6.97 (td, J = 7.9 Hz, 2H, Ar-H), 6.82 (d, J = 7.8 Hz, 2H, Ar-H), 6.61 (d, J = 8.0 Hz,
2H, Ar-H), 2.35 (m, 4H, CHMey), 1.27 (m, 12 H, CH(CHa)2), 0.86 (m, 12 H, CH(CHj3).);
3C{*H} NMR (CDCl3, 100 MHz): & 166.2 (Vt, Jp.c = 21.6 Hz, C=N), 141.6 (Ar), 132.4 (Ar),
124.0 (Ar), 122.0 (Ar), 114.1 (Ar), 110.8 (Ar), 64.7 (Pd-C), 27.8 (vt, Jp.c = 9.6 Hz, CHMe)),
18.9 (CHMey), 18.2 (vt, Jp-c = 3.8 Hz, CHMe2). °F NMR (C¢Dg, 472 MHz): & -138.1 (q, Ja-F =
29.7 Hz); “B NMR (CsDs, 128 MHz): & 3.1 (t, Jre = 29.4 Hz). Anal. Calcd for
C27H36BCIF2N4P2Pd: C: 48.46; H, 5.42; N: 8.37. Found: C: 48.73; H: 5.48; N: 8.20.
R F Synthesis of (BPNCNPPNPtCI (7-Pt). 6-Pt (100.0 mg, 0.140 mol)
QN/B\N,Q and BFs:*OEt> (21.8 mg, 0.154 mmol) were added to a PTFE
NER ! N stoppered Schlenk flask and dissolved in toluene to give a yellow
)\F;‘Pt*fl‘}l( solution. The solution was then heated at 110 °C for 16 h and the flask

~ &

through a pad of Celite, the solvent was removed from the filtrate under vacuum to yield a

was brought back into a glovebox. The solution was then filtered

yellow solid. The solid was then redissolved in THF and layered with pentane (1:2) and placed in
a -35 °C freezer overnight to give a yellow powder. The supernatant was decanted and then
yellow powder was then washed with pentane (3 x 10 mL) and dried under vacuum (70.2 mg,
42%). 3P{*H} NMR (CsDg, 162 MHz): & 115.3 (s, Jp-pt = 3267.5 Hz); *H NMR (CsDs, 400
MHz): 6 7.95 (d, J = 7.6 Hz, 2H, Ar-H), 6.97 (td, J = 8.1 Hz, 2H, Ar-H), 6.83 (d, J = 7.7 Hz, 2H,
Ar-H), 6.63 (d, J = 7.6 Hz, 2H, Ar-H), 2.53 (m, J = 7.2 Hz, 4H, CHMey), 1.26 (m, 12 H,
CH(CHs)2), 0.84 (m, 12 H, CH(CHs3)2); ); *C{*H} NMR (C¢Ds, 100 MHz): & 166.6 (C=N), 142.7
(Ar), 133.0 (Ar), 124.2 (Ar), 121.7 (Ar), 115.0 (Ar), 110.8 (Ar), 55.3 (Pt-C), 28.5 (vt, Jp.c = 13.4
Hz, CHMe,), 18.2 (CHMey), 17.5 (vt, J = 3.6 Hz, CHMe2). °*F NMR (C¢Ds, 472 MHz): § -138.2
(4, Js-r = 29.4 Hz); 1'B NMR (CéDs, 128 MHz): & 3.4 (t, Jr-8 = 29.6 Hz).

Zn Synthesis of Zn[(PNCNPPT)PdCI]2 (8-Pd). 6-Pd (100.0 mg,

N/ \N 0.1596 mmol) and ZnCl; (11 mg, 0.080 mmol) were added to a

N~ f N Schlenk flask and dissolved in toluene to give an initial brown
)\ P“——F’ld—*#’/< solution. 3P NMR spectroscopy was used to monitor the
‘Q ¢ >7 2| reaction conversion. After stirring for 12 h the solution turned

orange. The solution was filtered through a pad of Celite and the volatiles were removed from
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the filtrate under vacuum to yield an orange solid. It was recrystallized by dissolving the solid in
THF, layering with pentane in a 1:1 ratio, and left in a freezer at -35 °C overnight. Orange
precipitate formed overnight. The supernatant was decanted from the resultant solid which was
then washed with pentane (3 x 5 mL) and dried under vacuum to yield an orange solid (91 mg,
43% yield). **P{*H} NMR (C¢Dg, 202 MHz): § 106.2 (s); *H NMR (CsDg, 400 MHz): § 7.10 (m,
4H, Ar-H), 6.73 (m, 12H, Ar-H), 2.61 (m, 8H, CHMe), 1.51 (m, 24H, CHMe), 1.10 (m, 24H,
CHMey); BC{*H} NMR (CsDs, 100 MHz): & 171.9 (C=N), 150.2 (Ar), 133.5 (Ar), 123.3 (Ar),
119.7 (Ar), 113.9 (Ar), 110.0 (Ar), 74.3 (s, Pd-C), 27.6 (vt, Jp.c = 10.8 Hz, CHMe,), 19.0
(CHMe»), 18.4 (vt, Jp-c = 3.7 Hz, CHMey). Anal. Calcd for Cs4H72Cl2NgP4Pd2Zn: C: 49.65; H:
5.56; N: 8.58; Found: C: 49.41; H: 5.29; N: 8.12

Zn Synthesis of Zn[(PNCNPPT)PtCI]2 (8-Pt). 6-Pt (107.4 mg, 0.149

N/ \N mmol) and ZnCl> (10.1 mg, 0.070 mmol) were added to a

N ’ N Schlenk flask and dissolved in toluene in the dark to give an
)\Fl’——Pt——-l\D/k initial brown solution. 3P NMR spectroscopy was used to
4< c >7 ,| monitor the reaction conversion. After stirring for 12 h the

solution turned yellow. The solution was filtered through a pad of Celite and the volatiles were
removed to yield a yellow solid. The solid was recrystallized by dissolving the solid in THF,
layering with pentane in a 1:1 ratio, and left in a freezer at -35 °C overnight. Yellow precipitate
formed overnight. The supernatant was decanted from the resultant solid which was then washed
with pentane (3 x 5 mL) and dried under vacuum to yield a yellow solid (88.4 mg, 40%).
31pLIH} NMR (CsDs, 202 MHz): § 99.0 (s, Jp-pt = 3181.5 Hz); *H NMR (CsDs, 400 MHz): & 7.08
(m, 4H, Ar-H), 6.74 (m, 12H, Ar-H), 2.79 (m, 8H, CHMe), 1.50 (m, 24H, CHMe), 1.08 (m,
24H, CHMe,); C{*H} NMR (CsDs, 100 MHz): § 171.1 (t, J = 13.7 Hz), 150.3 (Ar), 133.6 (Ar),
123.27 (Ar), 119.7 (Ar), 114.1 (Ar), 109.9 (Ar), 62.4 (Pt-C), 28.4 (vt, J = 13.5 Hz, CHMey), 18.8
(CHMey), 18.0 (vt, J = 2.8 Hz). Cs4sH72CI2NgP4PtZn: C: 43.72; H: 4.89; N: 7.55; Found: C:
43.75; H: 5.07; N: 6.73

= Synthesis of (Ta¢PNCNPPIPACI (9-Pd). 6-Pd (20.0 mg, 0.0319
CI-/‘Té;Cl mmol) and TaCls (12.3 mg, 0.0319 mmol) were added to a J. Young
| tube and dissolved in CeDs. After heating at 80 °C overnight, the
)\5\' = l\\'k solution became purple blue and 3P NMR analysis confirmed the
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completion of the reaction. The solution was filtered and the volatiles were removed from the
filtrate under vacuum. The solid was dissolved in CH2Cl; and layered with pentane in 1:1 ration
and left in a -35 °C freezer. Purple precipitate formed overnight. The supernatant was removed
and the solid was washed with pentane several times and then dried. (16.0 mg, 53%). 3'P{*H}
NMR (CsDs, 202 MHz): § 114.4 (s); *H NMR (CgDs, 400 MHz): § 8.42 (d, J = 8.3 Hz, 2H, Ar-
H), 7.11 (td, J = 7.8 Hz, 2H, Ar-H), 6.74 (td, J = 7.8 Hz, 2H, Ar-H), 6.67 (d, J = 8.3 Hz, Ar-H),
2.46 (bs, 4H, CHMey), 1.33 (m, 12 H, CH(CHs)2), 0.78 (m, 12 H, CH(CHz3)2); BC{*H} NMR
(CsDs, 100 MHz): & 164.7 (vt, Jp-c = 17.7 Hz, C=N), 145.8 (Ar), 132.6 (vt, J = 3 Hz, Ar), 125.3
(Ar), 123.9 (d, J = 2.4 Hz, Ar), 109.5 (Ar), 102.7 (Ar), 30.2 (CHMey), 18.2 (CHMe). Anal.
Calcd for C27H36ClsN4P2PdTa: C: 52.27; H: 5.85; N: 9.03. Found: C: 51.92; H: 5.79; N: 8.95.
Synthesis of (T2CPNCNPPIPLCI (9-Pt). 6-Pt (73.3 mg, 0.098 mmol)
C'“/TEQC' and TaCls (35.2 mg, 0.098 mmol) were added to a 25 mL PTFE
| stoppered Schlenk flask, dissolved in toluene in the dark, and stirred
)\ b I\,ik for 12 h at 110 °C. During stirring, the solution turned blue and was
4« Cl >7 then filtered through a pad of Celite. The volatiles were removed from
the filtrate to yield a blue solid. The solid was dissolved in CH2Cl, and layered with pentane in

1:1 ratio and left in a -35 °C freezer. Blue precipitate formed overnight. The supernatant was
removed and the solid was washed with pentane several times and then dried. (44.9 mg,
44%).2'P{*H} NMR (CsDs, 202 MHz): & 106.8 (S, Jr-pt = 3074.4 Hz); *H NMR (CsDs, 400 MHz):
6 8.44 (d, J = 3.7 Hz, 2H, Ar-H), 7.12 (m, 2H, Ar-H, overlaps with solvent) 6.70 (m, 4H, Ar-H)
2.6 (br s, 4H, CHMey), 1.30 (m, 12 H, CH(CH3)2), 0.75 (m, 12 H, CH(CHs)2); BC{*H} NMR
(CDClz, 100 MHz): & 161.7 (C=N), 144.3 (Ar), 132.5 (Ar), 128.6 (Ar), 126.4 (Ar), 123.9 (Ar),
123.6 (Ar), 109.9 (Ar), Pt-C not observed with achievable concentration, 22.8 (CH(CHs),), 18.7
(CH(CHs3)2), 14.2 (CH(CHz3)2).

Table S1. *C{*H} NMR Data for Palladium and Platinum Compounds, § ppm.

C=N¢ CAr CAr CAr CAr CAr CAr CH® CH(Me)2 CH(Me)2*
161.5 27.8 18.2
_Pda
3-Pd (=175 139.9 1301 1246 1229 1135 110.6 (3= 10.4) 19.2 (1=35)
161.4 28.3 17.8
_pta
3-Pt (1=152) 139.8 130.1 1245 1228 1136 1104 (1=-142) 19.0 (1=3.0)
27.7 18.4
4a-Pd 166.3 1472 1333 1230 1203 1135 1102 (1=110) 18.9 (1=38)
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4b-Pd? 1662 1509 1379 12331 1229 1220 1116 28:2 19.1 18.8

5a i 1395 1300 1246 1231 1136 1112 19.2

6-Pt 173.2 1545 1352 1221 1176 1134 1093 J= 1'3 8 19.0 18.3
28.5 17.5
7-Pt 166.6 1427 133.0 1242 1217 115 110.8 1=134 18.2 1=36

8-Pt ; 150.3 1336 1233 119.7 1141 1099 ' 18.8 2 8

9-PtP 161.7 1443 1325 1286 1264 1239 109.9 22.8 18.7 14.2

NMR spectra collected in C¢Dg unless otherwise noted. 2 Spectra collected in CDCls. ® Spectra collected in CD2Cl,.
¢ Coupling to phosphorus was not seen in all compounds due to signal broadness and low achievable concentration

of compounds.

Table S2. 'H NMR Data for Palladium and Platinum Compounds, & ppm.

NH CHAr CHAr CHAr  CHAr a-CH CH CH(Me) CH(Me):

3p 1366 00 120 716709 ] 323 157 1.29

4a-Pt 990 0% 68 6.73 ] ] 276 145 1.03

(4H) (2H) (2H)
) ) 5.51 ) )

-Pta - - -
4b-Pt int.p - 155 Hzi.
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7.39 7.16 6.86

6-Pd - oH oH AH - - 2.74 1.53 1.18
7.97 6.97 6.82 6.61
7-Pd - oH oH oH oH - 2.35 1.27 0.86
7.10 6.73

8-Pd - 4H 19H - - - 2.61 151 1.10

8.42 7.11 6.74 6.67
9-Pd - oH oH oH oH - 2.46 1.33 0.78

NMR spectra collected in CsDs unless otherwise noted. 2 Spectra collected in CDCls. Some aryl peaks contain

overlapping multiplets which accounts for some compounds having fewer signals observed in the arene region.
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Figure S5. 'H NMR (400 MHz) spectrum of 1 in (CD3)2SO.
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Figure S8. BC{*H} NMR (125 MHz) spectrum of 2 in CgDs.
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Figure S9. 3'P{*H} NMR (202 MHz) spectrum of 2 in C¢Des.
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Figure S10. *H NMR (400 MHz) spectrum of 3-Pd in CDCls. The sample contains residuals
CHCI> (s, 5.30 ppm), diethyl ether (g, 3.27 ppm; t, 1.12 ppm), pentane (m, 1.27 ppm; t, 0.88

ppm).
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Figure S11. 3C{*H} NMR (100 MHz) spectrum of 3-Pd in CDCla.
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Figure S12. 3'P{*H} (162 MHz) NMR spectrum of 3-Pd in CDCls.
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Figure S13. *H NMR (400 MHz) spectrum of 3-Pt in CDCls. The sample contains residuals
CH2Cl: (s, 5.30 ppm), pentane (m, 1.27 ppm; t, 0.88 ppm).
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Figure S14. 3C{*H} NMR (100 MHz) spectrum of 3-Pt in CDCls.
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Figure S16. *H NMR (400 MHz) spectrum of 4a-Pd and 4b-Pd in C¢Ds. Both tautomers can be

seen upon dissolution with 4a-Pd being the major tautomer (95%) and 4b-Pd the minor tautomer
(5%). Contains residual THF (t, 3.57), and pentane (m 1.27, t 0.87).
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Figure S18. *C{*H} (100 MHz) NMR spectrum of 4b-Pd in CDCls Sample contains residual
toluene (s, 137.9, 129.1, 128.2, 125.3, 21.5 ppm).
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Figure S19. 3P{H} (202 MHz) NMR spectrum of 4a-Pd (108.4 ppm, major tautomer, 95%)
and 4b-Pd (91.1 ppm, minor tautomer, 5%) in CeDe.
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Figure S21. 3C{*H} NMR (125 MHz) spectrum of 4-Pt in CsDs. Contains residual toluene (s:
137.9, 129.3, 128.6, 125.7, 21.1) and pentane (s: 34.4, 22.7, 14.3).
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Figure S22.31P{*H} NMR (162 MHz) spectrum of 4-Pt in CeDs.
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Figure S23. *H NMR (500 MHz) spectrum of 4-Pt in CDCls
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Figure S24. 3'P{*H} NMR (202 MHz) spectrum of 4-Pt in CDCls 4a-Pt (53%) at 100.9 ppm
and 4b-Pt (47%) at 90.3 ppm.
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Figure S25. 'H NMR (400 MHz) spectrum of 5 in CDCls.
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Figure S32. BC{*H} NMR (100 MHz) spectrum of 6-Pt in CsDs.
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Figure S33. 3P{*H} NMR (202 MHz) spectrum of 6-Pt in C¢Ds.
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Figure $36. 3P{*H} NMR (202 MHz) spectrum of 7-Pd in CsDs.
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Figure S50. *'P{*H} NMR (202 MHz) spectrum of 9-Pd in CsDs.
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IV. X-ray Diffractometry Details

3-Pd (CCDC 2351193)

Data Collection
A Leica MZ 75 microscope was used to identify a suitable orange block with very well

defined faces with dimensions (max, intermediate, and min) 0.102 x 0.085 x 0.074 mm3 from a
representative sample of crystals of the same habit. The crystal mounted on a nylon loop was
then placed in a cold nitrogen stream (Oxford) maintained at 110 K.

A BRUKER Quest X-ray (fixed-Chi geometry) diffractometer with a PHOTON II
detector was employed for crystal screening, unit cell determination, and data collection. The
goniometer was controlled using the APEX3 software suite.® The sample was optically centered
with the aid of a video camera such that no translations were observed as the crystal was rotated
through all positions. The X-ray radiation employed was generated from a Mo-Ius X-ray tube
(Ko = 0.71073A).

45 data frames were taken at widths of 1°. These reflections were used to determine the
unit cell. The unit cell was verified by examination of the h k | overlays on several frames of
data. No super-cell or erroneous reflections were observed.

After careful examination of the unit cell, an extended data collection procedure (2 sets)
was initiated using omega scans.

Data Reduction, Structure Solution, and Refinement
Integrated intensity information for each reflection was obtained by reduction of the data

frames with the program APEX3.% The integration method employed a three dimensional
profiling algorithm and all data were corrected for Lorentz and polarization factors, as well as for

crystal decay effects. Finally the data was merged and scaled to produce a suitable data set. The
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absorption correction program SADABS® was employed to correct the data for absorption
effects.

Systematic reflection conditions and statistical tests of the data suggested the space
group P2:12121. A solution was obtained readily using XT/XS in APEX3.%>’ Three molecules of
dichloromethane were found solvated. Hydrogen atoms were placed in idealized positions and
were set riding on the respective parent atoms. All non-hydrogen atoms were refined with
anisotropic thermal parameters. Elongated thermal ellipsoids on one of the CH2Cl and all the
four -CH(CHz)2> groups suggested disorder, which were modeled successfully between two
positions each with an occupancy ratio of 0.58:0.42 (the occupancy ratio of the disordered
groups were restrained to the same value as the independently refined values were very close to
the reported value). Appropriate restraints and / or constraints were used to keep the bond
distances, angles, and thermal ellipsoids meaningful. Absence of additional symmetry and voids
were confirmed using PLATON (ADDSYM).8 The structure was refined (weighted least squares

refinement on F?) to convergence.”°

7-Pt (CCDC 2351194)

Data Collection
A Leica MZ 75 microscope was used to identify a suitable colorless block with very well

defined faces with dimensions (max, intermediate, and min) 0.351 x 0.216 x 0.172 mmS3 from a
representative sample of crystals of the same habit. The crystal mounted on a nylon loop was
then placed in a cold nitrogen stream (Oxford) maintained at 110 K.

A BRUKER Quest X-ray (fixed-Chi geometry) diffractometer with a PHOTON Il
detector was employed for crystal screening, unit cell determination, and data collection. The

goniometer was controlled using the APEX3 software suite.> The sample was optically centered
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with the aid of a video camera such that no translations were observed as the crystal was rotated
through all positions. The X-ray radiation employed was generated from a Mo-Ius X-ray tube
(Ko = 0.71073A).

45 data frames were taken at widths of 1°. These reflections were used to determine the
unit cell. The unit cell was verified by examination of the h k | overlays on several frames of
data. No super-cell or erroneous reflections were observed.

After careful examination of the unit cell, an extended data collection procedure (6 sets)
was initiated using omega and phi scans.

Data Reduction, Structure Solution, and Refinement
Integrated intensity information for each reflection was obtained by reduction of the data

frames with the program APEX3.> The integration method employed a three dimensional
profiling algorithm and all data were corrected for Lorentz and polarization factors, as well as for
crystal decay effects. Finally the data was merged and scaled to produce a suitable data set. The
absorption correction program SADABS* was employed to correct the data for absorption
effects.

Systematic reflection conditions and statistical tests of the data suggested the space group
P-1. A solution was obtained readily (Z=4; Z'=2) using XT/XS in APEX3.>’ Hydrogen atoms
were placed in idealized positions and were set riding on the respective parent atoms. All non-
hydrogen atoms were refined with anisotropic thermal parameters. Residual electron (4.2 e’/A3),
which could not be attributed to any solvent (reaction was carried out in water free reaction
conditions), was MASKed using OLEX2. Assuming the electron density as partially occupied
water molecule, the occupancy refines to 0.165 water molecules per Pt complex. Absence of
additional symmetry and voids were confirmed using PLATON (ADDSYM).8 The structure was

refined (weighted least squares refinement on F?) to convergence.”®

S70



8-Pd (CCDC 2351196)

Data Collection

A Leica MZ 75 microscope was used to identify a suitable red block with very well

defined faces with dimensions (max, intermediate, and min) 0.128 x 0.054 x 0.023 mm3 from a
representative sample of crystals of the same habit. The crystal mounted on a nylon loop was
then placed in a cold nitrogen stream (Oxford) maintained at 110 K.

A BRUKER Venture X-ray (kappa geometry) diffractometer was employed for crystal
screening, unit cell determination, and data collection. The goniometer was controlled using the
APEX3 software suite.> The sample was optically centered with the aid of a video camera such
that no translations were observed as the crystal was rotated through all positions. The X-ray
radiation employed was generated from a Cu-Ius X-ray tube (K« = 1.5418A with a potential of
50 kV and a current of 1.0mA).

45 data frames were taken at widths of 1°. These reflections were used to determine the
unit cell. The unit cell was verified by examination of the h k | overlays on several frames of
data. No super-cell or erroneous reflections were observed.

After careful examination of the unit cell, an extended data collection procedure (17 sets)
was initiated using omega and phi scans.

Data Reduction, Structure Solution, and Refinement
Integrated intensity information for each reflection was obtained by reduction of the data

frames with the program APEX3.% The integration method employed a three dimensional
profiling algorithm and all data were corrected for Lorentz and polarization factors, as well as for

crystal decay effects. Finally the data was merged and scaled to produce a suitable data set. The

S71



absorption correction program SADABS® was employed to correct the data for absorption
effects.

Systematic reflection conditions and statistical tests of the data suggested the space group
P21/c. A solution was obtained readily using XT/XS in APEX3.>" Two molecules of toluene and
a molecule of isooctane were found solvated. Hydrogen atoms were placed in idealized positions
and were set riding on the respective parent atoms. All non-hydrogen atoms were refined with
anisotropic thermal parameters. Elongated thermal ellipsoids and residual electron density peaks
near the solvent molecules indicated possible disorder. No efforts were made to model this
disorder. Absence of additional symmetry or void were confirmed using PLATON (ADDSYM).®
The structure was refined (weighted least squares refinement on F?) to convergence.”®

9-Pd (CCDC 2351195)
Data Collection

A Leica MZ 75 microscope was used to identify a dark brown block with very well

defined faces with dimensions (max, intermediate, and min) 0.452 x 0.272 x 0.248 mm3 from a
representative sample of crystals of the same habit. The crystal mounted on a nylon loop was
then placed in a cold nitrogen stream (Oxford) maintained at 110 K.

A BRUKER APEX 2 Duo X-ray (three-circle) diffractometer was employed for crystal
screening, unit cell determination, and data collection. The goniometer was controlled using the
APEX3 software suite.®> The sample was optically centered with the aid of a video camera such
that no translations were observed as the crystal was rotated through all positions. The detector
(Bruker - PHOTON) was set at 6.0 cm from the crystal sample. The X-ray radiation employed
was generated from a Mo sealed X-ray tube (K = 0.71073A with a potential of 40 kV and a

current of 40 mA).
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45 data frames were taken at widths of 1.0°. These reflections were used in the auto-
indexing procedure to determine the unit cell. A suitable cell was found and refined by nonlinear
least squares and Bravais lattice procedures. The unit cell was verified by examination of the h k
| overlays on several frames of data. No super-cell or erroneous reflections were observed.

After careful examination of the unit cell, an extended data collection procedure (6 sets)
was initiated using omega scans.

Data Reduction, Structure Solution, and Refinement
Integrated intensity information for each reflection was obtained by reduction of the data

frames with the program APEX3.° The integration method employed a three dimensional
profiling algorithm and all data were corrected for Lorentz and polarization factors, as well as for
crystal decay effects. Finally, the data was merged and scaled to produce a suitable data set. The
absorption correction program SADABS* was employed to correct the data for absorption
effects.

Systematic reflection conditions and statistical tests of the data suggested the space group
P2:/n. A solution was obtained readily using XT/XS in APEX2>" A molecule of
dichloromethane was found solvated. Hydrogen atoms were placed in idealized positions and
were set riding on the respective parent atoms. All non-hydrogen atoms were refined with
anisotropic thermal parameters. Elongated ellipsoids on the solvent atoms suggested disorder
which was successfully modeled between two positions which refined to an occupancy ratio very
close to 0.5. For the final refinement cycles the occupancy of the disordered solvent molecule
were fixed to 0.5. Appropriate restraints were added to keep the bond distances, and thermal
ellipsoids meaningful. Absence of additional symmetry and voids were confirmed using
PLATON (ADDSYM).” The structure was refined (weighted least squares refinement on F?) to

convergence.”®
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V. Electrochemical Analysis
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Figure S54. Cyclic voltammogram of 4-Pd in CH2Cl2 (1 mM) with [BusN][PFe] (0.1 M) as the
supporting electrolyte. E12 =0.67 V (A), Irreversible redox event = -0.21V (I1).
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Figure S55. Cyclic voltammogram of 7-Pd in CH2Cl2 (1 mM) with [BusN][PFe] (0.1 M) as the
supporting electrolyte. Ei, =1.18 V (A), 0.25V (B).
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Figure S56. Cyclic voltammogram of 8-Pd in CH2Cl, (1 mM) with [BusN][PFe] (0.1 M) as the
supporting electrolyte. E1» =0.92 V (A), 0.02 V (B), -0.22 V (C).
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Figure S57. Cyclic voltammogram of 9-Pd in CH2Cl. (1 mM) with [BusN][BArF24] (0.1 M) as
the supporting electrolyte. Ligand oxidation = 1.18 V (A), Ex2 =0.57 V (B), -0.87 V (C).
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Figure S58. Cyclic voltammogram of 4-Pt in CH2Cl2 (1 mM) with [BusN][PFs] (0.1 M) as the

supporting electrolyte. Irreversible redox events = 0.62 V (1), -0.14 V (11).
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Figure S59. Cyclic voltammogram of 7-Pt in CH2Cl2 (1 mM) with [BusN][PFs] (0.1 M) as the
supporting electrolyte. Eiz =1.03V (A), 0.11V (B).
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Figure S60. Cyclic voltammogram of 8-Pt in CH2Cl2 (1 mM) with [BusN][PFs] (0.1 M) as the
supporting electrolyte. E1» =0.82 V (A), -0.09V (B), -0.32 V (C).
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Figure S61. Cyclic voltammogram of 9-Pt in CH2Cl2 (1 mM) with [BusN][BArF24] (0.1 M) as
the supporting electrolyte. Ligand oxidation = 1.07 (A), E12. =0.47 VV (A), -0.88 V (B).
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VI. UV-Vis Data.
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Figure S62. UV-Vis of 4-Pd in toluene (0.05 mM).
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Figure S63. UV-Vis of 4-Pd in CDCl3 (0.25 mM).
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Figure S64. UV-Vis of 7-Pd in toluene (0.05 mM).
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Figure S65. UV-Vis of 8-Pd in toluene (0.05 mM).
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Figure S66. UV-Vis of 9-Pd in toluene (0.025 mM).
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Figure S67. UV-Vis of 4-Pt in toluene (0.25 mM).
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Figure S 68. UV-Vis of 4-Pt in CDCl3 (0.28 mM).
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Figure S69. UV-Vis of 7-Pt in toluene (0.06 mM).
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Figure S70. UV-Vis of 8-Pt in toluene (0.03 mM).
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Figure S71. UV-Vis of 9-Pt in toluene (0.09 mM).
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