Boosting the Oxygen Evolution Reaction via the Reconstruction of $M(OH)_x/Fe_3O_4$ Catalyst

Xiaoqu Wang,^{a,c,†} Limin Wang,^{a,†} Yongchun Liu,^{a,†} Rajkumar Devasenathipathy,^b Li Liu,^a Qiulan Huang,^a Dujuan Huang,^a Youjun Fan,^{*a} Du-Hong Chen^{*a} and Wei Chen^{*a}

^a Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and

Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China

^{b.}Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech),

Nanjing 211816, China

^c School of Materials and Energy, Institute of Energy Storage Technologies, Yunnan

University, Kunming 650091, China

* Corresponding authors.

E-mail addresses: youjunfan@mailbox.gxnu.edu.cn (Y. Fan), dhchen@gxnu.edu.cn (D.

H. Chen), weichen@mailbox.gxnu.edu.cn (W. Chen).

⁺ These authors contributed equally to the work.

1. Supporting Theoretical Calculation Details

The Vienna Ab initio Simulation Package was used for all density functional theory (DFT) calculations.¹ Utilizing the PBE generalized gradient approximation exchange-correlation function, the projector augmented wave pseudopotential was employed in the computations.^{2,3} To account for strongly localized d-electrons for Ni and Fe, all metal oxide energetics were computed using the DFT with the Hubbard-U framework (DFT+U). According to linear response theory, the Hubbard-U correction terms were at U_{eff}(Ni) = 6.2 eV and U_{eff}(Fe) = 5.3 eV. The adsorption energy was calculated using K-sampling with a Monkhorst-Pack mesh of $3\times3\times1$, the DOS was calculated using $9 \times 9 \times 1$, and the cutoff energy of the plane waves basis set was 500 eV. The ultimate force on each atom was less than 0.05 eV Å⁻¹, all structures were spin polarized, and all atoms were totally relaxed with an energy convergence tolerance of 10^{-5} eV per atom.

The adsorption energy of intermediates was computed using the following Equation (1):

$$\Delta G_{ads} = E_{ads} - E_* + \Delta E_{ZPE} - T\Delta S \tag{1}$$

Where ads represents OH*, O*, OOH*, and the $(E_{ads} - E_*)$ corresponds to the binding energy, ΔE_{ZPE} refers to the zero-point energy change, ΔS was regarded as the entropy change. The calculated ΔE_{ZPE} and ΔS were grasped by vibration frequency calculation.

The Gibbs free energy of the four reaction steps refers to the following four Equations (2) - (5):

$$* + O_2 + e^- + H_2O = *OOH + OH^-$$
 (2)

$$*OOH + e^{-} = *O + OH^{-}$$
 (3)

$$*O + e^{-} + H_2O = *OH + OH^{-}$$
 (4)

$$*OH + e^{-} = * + OH^{-}$$
 (5)

2. Supporting Figures and Table

Fig. S1 SEM (a–c) and TEM (d–g) images Fe₃O₄/IF.

Fig. S2 TEM-EDX spectra of Fe_3O_4/IF (a) and $M(OH)_x/Fe_3O_4/IF$ (b).

Fig. S3 SEM images of M(OH)_x/Fe₃O₄/IF (H₂O).

Fig. S4 (a–c) SEM images of Fe_3O_4/IF (SO₄^{2–}). (d–f) SEM images of M(OH) $x/Fe_3O_4/IF$ (SO₄^{2–}). (g–i) SEM images of Fe₃O₄/IF (Br[–]). (j–l) SEM images of M(OH) $_x/Fe_3O_4/IF$ (Br[–]).

Fig. S5 SEM images of Fe_3O_4 powder (a), Fe_3O_4/IF (no metal salts) (b), IF (c), $M(OH)_x/Fe_3O_4$ powder (d), $M(OH)_x/Fe_3O_4/IF$ (no metal salts) (e), and $M(OH)_x/IF$ (f).

Fig. S6 Cyclic voltammograms of Fe₃O₄/IF (a), M(OH)_x/IF (b), and M(OH)_x/Fe₃O₄/IF (c) recorded at a double layer region with the increasing scan rates of 10, 20, 30, 40, 50, and 60 mV s⁻¹. (d) The plots of current density vs scanning rate.

Fig. S7 The CV curves of the 1 st and 15000 th of $M(OH)_x/Fe_3O_4/IF$ electrode at the potential of 0.9 to 1.65 V vs. RHE recorded in N₂-saturated 1 M KOH at 100 mV s⁻¹.

Fig. S8 The EPR spectra of $M(OH)_x/Fe_3O_4/IF$ electrode before and after OER measurement.

Table	S1 .	Comparisons	of	catalytic	performance	of	M(OH) _x /Fe ₃ O ₄ /IF	and	other	electrocatalysts	
reported recently for OER.											

		Overpotentials	Tafel		Ref.	
		(mV)@	slope	Stability		
Catalyst	Electrolyte	Currrent density	(mV	(h)		
		(mA cm⁻²)	dec⁻¹)			
	1 14 101	214@50		70	This work	
WI(OH) _x / Fe₃O₄/ IF	T IN KOH	311@500	57			
20% Put NGO	1 14 1601	233@50	50	25	Chem. Eng. J. 2022 , 439,	
2% KU-INCO	I M KOH	269@100	59		135634.	
	1 14 1601	242@100	()	20	Chem. Eng. J. 2021 , 426,	
NCF-C3	I M KOH	343@100	63	20	130785.	
B-MOF-Zn-Co	1 M KOH	362@100	66.8	300	Small 2023 , 2308517.	
	1 14 1601	200,000	153	120	Chem. Eng. J. 2023 , 462,	
NI-B-P micro spheres	I M KOH	360@300			142177.	
Ni S. /NE		220@100	70	2.0	Adv. Mater. 2017, 29,	
NI332/ NF	IMKOH	330@100	70	2.0	1701584.	
	1 M KOH	220@100			J. Mater. Chem. A 2019 , 7,	
VOX/10332@101	TWRON	330@100			10534-10542.	
	1 M KOH	320@100	46	100	Chem. Eng. J. 2023 , 475,	
NI30-2	TWRON	400@500	40	100	146140.	
CoP-Co₂P@PC/PG NHs	1 M KOH	272@20	66		Small 2019 , <i>15</i> , 1804546.	
NiFeB hydroxide		252@100		120	Nat. Commun. 2022 , 13,	
nanosheets	IWROT	232@100		130	6094.	

Supporting References

- G. K. J. Furthmiiller, Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, *Phys. Rev. B* 1996, **54**, 11169.
- 2. P. E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, 17953–17979.
- K. B. John P. Perdew, Matthias Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865.