Supporting Information

Hypercoordinated Si/Ge Driving Excellent HER Catalytic Performance in New TM_2X (X = Si and Ge) Monolayers: A High-Throughput Investigation by Screening Transition Metal Elements

Tianya Li^a, Guangtao Yu^{a,*}, E Yang^a, Wei Chen^{a,b,c,*}

^aEngineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China

^bAcademy of Carbon Neutrality of Fujian Normal University, Fuzhou, 350007, China ^cFujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, 361005, China

*Corresponding author.

E-mail: yugt@fjnu.edu.cn (Guangtao Yu), chenwei@fjnu.edu.cn (Wei Chen)

1. Supporting Figures

Figure S1. Possible 2D Co_2Si structures obtained through the PSO simulation implemented in CALYPSO code. The relative energy per atom is indicated.

Figure S2. Possible 2D Co₂Ge structures obtained through the PSO simulation implemented in CALYPSO code. The relative energy per atom is indicated.

Figure S3. Phonon spectrum of the TM₂Si series.

Figure S4. Phonon spectrum of the TM₂Ge series.

Figure S5. ELF maps of the TM_2X (X=Si and Ge) systems, where the pictures in the first two rows are the top views of the planar and quasi-planar monolayers, and the others are the side views of the buckled monolayers.

Figure S6. Evolution of total energy of the TM_2Si monolayers at 300 K from AIMD, and the corresponding snapshots after 3 *ps*.

Figure S7. Evolution of total energy of the TM_2Ge monolayers at 300 K from AIMD, and the corresponding snapshots after 3 *ps*.

Figure S8. The calculated DOSs of the TM₂Si systems.

Figure S9. The calculated DOSs of the TM₂Ge systems.

Figure S10. Partial density of states (PDOS) about the 1s orbital of H atom after the H adsorption of TM_2Si (TM=Fe, Pd and Pt). The Fermi level is set to zero marked by the gray dashed line. Inset: molecular orbitals related to the H atom adsorbed at the active site in different energy ranges marked by the green dashed line. The green arrow represents the σ_{1S} -center of the adsorbed H.

Figure S11. Partial density of states (PDOS) about the 1s orbital of H atom after the H adsorption of TM₂Ge (TM= Ni, Fe, Pd and Ir). The Fermi level is set to zero marked by the gray dashed line. Inset: molecular orbitals related to the H atom adsorbed at the active site in different energy ranges marked by the green dashed line. The green arrow represents the σ_{1S} -center of the adsorbed H.

Figure S12. PDOS about the 1s orbitals of H atoms as well as the σ_{1S} -center for H adsorbed on the Ni₂Ge monolayer under the different H coverages. The Fermi level is set to zero marked by the gray dashed line. Inset: Molecular orbitals related to the H atom adsorbed at the active site in different energy ranges marked by the green dashed line. The green arrow represents the σ_{1S} -center of the adsorbed H.

Figure S13. The calculated distance between two adjacent H atoms on the 2D Co₂Si (a), Co₂Ge (b), and Ni₂Ge (c) monolayers at the highest hydrogen coverage ($\theta_{H^*} = 3$ ML).

2. Supporting Tables

Table S1. The solvent effect on the computed ΔG_{H^*} values of the sampled Co₂Si monolayer.

Adsorption sites	ΔG_{H^*} (eV) without solvation	ΔG_{H^*} (eV) with solvation
B _{Co-Co}	-0.076	-0.077
T _{Co}	0.101	0.110
T _{Si}	0.346	0.357

A J	Co	Si	Co ₂	Ge
sites	$\Delta G_{H^*}(eV)$ without U_{eff}	$\Delta G_{H^*}(eV)$ with U_{eff}	$\Delta G_{H^*}(eV)$ without U_{eff}	$\Delta G_{H^*}(eV)$ with U_{eff}
B _{Co-Co}	-0.076	-0.120	-0.083	-0.099
T_{Co}	0.101	0.052	0.095	0.074
T _{Si/Ge}	0.346	0.329	0.604	0.574

Table S2. The calculated ΔG_{H^*} values of 2D Co₂Si and Co₂Ge monolayers under the DFT+U method.

Systoms		a-h (Å)	Bond Lengths (Å)		۲ (Å)
System			ТМ-ТМ	TM-Si	п (А)
Discost	Co ₂ Si	4.005	2.309	2.309	0
Planar	Os ₂ Si	3.486	2.460	2.460	0
	Ti ₂ Si	3.933	2.925	2.451	1.842
	Mn ₂ Si	3.890	2.668	2.358	1.440
Quasi-pianar	Fe ₂ Si	3.931	2.418	2.308	0.831
	Ni ₂ Si	3.780	2.526	2.215	1.404
	Zr ₂ Si	3.600	(3.681)	2.574	3.038
	Mo ₂ Si	3.409	(3.253)	2.356	2.590
	Ru ₂ Si	2.715	(3.976)	2.407	3.654
Decelated	Rh ₂ Si	2.800	(3.819)	2.368	3.460
Buckled	Pd ₂ Si	3.190	(3.553)	2.387	3.038
	Hf ₂ Si	3.600	(3.692)	2.578	3.050
	Ir ₂ Si	3.560	(2.970)	2.318	2.144
	Pt ₂ Si	2.985	(3.722)	2.385	3.299

Table S3. Structural information of the predicted TM_2Si monolayers, including thelattice parameters (a and b), bond lengths, and buckled heights (h).

<i>c</i>			Bond Len	gths (Å)	
System	ns	a=b (A)	ТМ-ТМ	TM-Si	h (A)
	V ₂ Ge	4.450	2.569	2.569	0
Planar	Co ₂ Ge	4.078	2.355	2.355	0
	Ni ₂ Ge	4.105	2.349	2.349	0
Quasi-planar	Fe ₂ Ge	4.051	2.456	2.369	0.750
	Zr ₂ Ge	3.630	(3.771)	2.610	3.134
	Nb ₂ Ge	3.490	(3.557)	2.492	2.931
	Mo ₂ Ge	2.750	(4.662)	2.706	4.383
	Ru ₂ Ge	2.770	(4.154)	2.496	3.834
	Rh ₂ Ge	2.880	(3.951)	2.450	3.584
Buckled	Pd ₂ Ge	3.143	(3.816)	2.472	3.356
	Hf ₂ Ge	3.602	(3.773)	2.607	3.148
	W ₂ Ge	2.750	(4.646)	2.695	4.356
	Os ₂ Ge	2.754	(4.189)	2.507	3.876
	Ir ₂ Ge	2.835	(3.999)	2.451	3.649
	Pt ₂ Ge	3.050	(3.863)	2.461	3.438

Table S4. Structural information of the predicted TM_2Ge monolayers, including thelattice parameters (a and b), bond lengths, and buckled heights (h).

		Bond Lengths					
Systems		TM-TM				TM-Si	
		In this study	this tudy ithis tudy itu		In this study In relevant experimental materials		elevant imental cerials
DI	Co ₂ Si	2.309	2.470	Co	2.309	2.488	Co ₃ Si
Planar	Os ₂ Si	2.460	2.682	Os	2.460	2.554	OsSi
	Ti ₂ Si	2.925	2.936	Ti	2.451	2.547	$TiSi_2$
	Mn ₂ Si	2.668	2.750	Mn	2.358	2.529	Mn ₃ SiIr
Quasi-planar	Fe ₂ Si	2.418	2.585	Fe	2.308	2.766	Fe11Si5
	Ni ₂ Si	2.526	2.630	TiNi(TiCo)	2.215	2.332	NiSi2
	Zr ₂ Si				2.574	2.778	ZrFeSi
	Mo ₂ Si				2.356	2.605	MoSi ₂
	Ru ₂ Si				2.407	2.412	RuSi
B 11 1	Rh ₂ Si				2.368	2.483	RhSi
Buckled	Pd ₂ Si				2.387	2.488	HfSiPd
	Hf ₂ Si				2.578	2.750	HfSiPd
	Ir ₂ Si				2.318	2.393	Mn₃SiIr
	Pt ₂ Si				2.385	2.421	Pt ₂ Si ₃

Table S5. The TM-TM and TM-Si bond lengths in TM_2Si , as well as in the relevant material systems synthesized experimentally.

		Bond Lo			ngths (Å)		
Systems		TM-TM				TM-Ge	
		In this study In this study In relevant experimental materials		In this study	In this study In this experimental materials		
	V ₂ Ge	2.569	2.583	V	2.569	2.650	V ₃ Ge
Planar	Co ₂ Ge	2.355	2.470	Co	2.355	2.372	Co5Ge7
	Ni ₂ Ge	2.349	2.496	Ni ₃ Ge	2.349	2.496	Ni₃Ge
Quasi-planar	Fe ₂ Ge	2.456	2.482	Fe13Ge3	2.369	2.511	Fe13Ge3
	Zr ₂ Ge				2.610	2.861	ZrGeIr
	Nb ₂ Ge				2.492	2.910	Nb ₃ Ge
	Mo ₂ Ge				2.706	2.710	Mo ₃ Ge
	Ru ₂ Ge				2.496	2.444	ScRuGe ₂
	Rh ₂ Ge				2.450	2.468	RhGe
Buckled	Pd ₂ Ge				2.472	2.453	TiPdGe
	Hf ₂ Ge				2.607	2.755	HfGe ₂
	W ₂ Ge				2.695	2.700	WGe ₂
	Os ₂ Ge				2.507	2.510	OsGe ₂
	Ir ₂ Ge				2.451	2.502	ZrIrGe
	Pt ₂ Ge				2.461	2.462	PtGeS

Table S6. The TM-TM and TM-Ge bond lengths in TM_2Ge , as well as in the relevant material systems synthesized experimentally.

Systems	C ₁₁ =C ₂₂	C ₁₂	C ₆₆
Ti ₂ Si	135.588	114.969	10.314
Mn ₂ Si	248.812	64.710	92.051
Fe ₂ Si	489.270	207.126	140.653
Co ₂ Si	134.790	54.386	40.176
Ni ₂ Si	281.647	5.152	138.247
Zr ₂ Si	372.698	168.653	102.022
Mo ₂ Si	473.650	71.769	200.941
Ru ₂ Si	1296.801	477.474	409.663
Pd ₂ Si	106.312	15.037	45.637
Hf ₂ Si	607.575	190.661	208.456
Ir ₂ Si	472.927	261.131	105.898
Pt ₂ Si	254.809	31.293	111.758

Table S7. The calculated elastic coefficients of the TM_2Si monolayers.

Systems	C ₁₁ =C ₂₂	C ₁₂	C ₆₆
V ₂ Ge	449.825	173.187	138.319
Fe ₂ Ge	363.835	198.101	82.867
Co ₂ Ge	110.082	43.175	32.537
Ni ₂ Ge	476.347	341.836	67.256
Zr ₂ Ge	258.205	147.002	55.602
Nb ₂ Ge	353.544	192.171	80.686
Ru ₂ Ge	1220.584	365.860	427.362
Rh ₂ Ge	602.608	169.360	216.624
Hf ₂ Ge	610.430	181.581	224.425
Os ₂ Ge	1462.744	835.523	313.610
Ir ₂ Ge	1203.100	321.130	440.985
Pt ₂ Ge	63.245	42.958	10.644

Table S8. The calculated elastic coefficients of the TM_2Ge monolayers.

Systems	Adsorption sites	$\Delta \mathbf{G}_{\mathbf{H}^{\star}}(\mathbf{eV})$
Ti ₂ Si		
Mn ₂ Si		
Fe ₂ Si	T _{Fe1}	0.242
Co ₂ Si	T_{Si}	0.346
	T_{Co}	0.101
	B _{Co-Co}	-0.076
Ni ₂ Si		
Zr ₂ Si	H_{Zr}	-1.068
	H_{Si}	-1.018
Mo ₂ Si		
Ru ₂ Si	H_{Ru}	-0.415
	T_{Ru}	-0.390
Rh ₂ Si		
Pd ₂ Si	H_{Pd}	0.076
	H_{Si}	0.246
Hf ₂ Si	H_{Hf}	-0.847
	H_{Si}	-1.094
Os ₂ Si	T_{Si}	-0.780
	T _{Os}	-1.351
Ir ₂ Si		
Pt ₂ Si	T_{Pt}	0.203
	H_{Pt}	0.328
	\mathbf{B}_{PtPt}	0.292

Table S9. The computed ΔG_{H^*} values for TM₂Si systems. The symbol "--" indicates that structures with adsorbed H* cannot be obtained.

Systems	Adsorption sites	$\Delta G_{\mathrm{H}^*}(\mathrm{eV})$
V ₂ Ge	B _{V-V}	-0.504
Fe ₂ Ge	T _{Fe1}	0.175
	T _{Fe2}	-0.197
	$\mathbf{B}_{Fe ext{-}Fe}$	-0.293
Co ₂ Ge	T _{Ge}	0.604
	T_{Co}	0.095
	B _{Co-Co}	-0.083
Ni ₂ Ge	T_{Ge}	0.551
	T_{Ni}	0.207
	$\mathbf{B}_{\mathbf{Ni}\cdot\mathbf{Ni}}$	-0.333
Zr ₂ Ge	H_{Zr}	-1.362
	H_{Ge}	-1.346
Nb ₂ Ge		
Mo ₂ Ge	H_{Mo}	-1.129
	H_{Ge}	-1.644
Ru ₂ Ge	H_{Ru}	0.881
	T_{Ru}	-0.468
Rh ₂ Ge	T_{Rh}	-0.984
	H_{Rh}	-1.498
	H_{Ge}	-1.369
Pd ₂ Ge	H_{Pd}	0.002
	H_{Ge}	0.120
Hf ₂ Ge	H_{Hf}	-1.309
	H_{Ge}	-1.572
W ₂ Ge	T_{W}	-1.183
	H_{W}	-0.693
	H_{Ge}	-0.726
Os ₂ Ge	H_{Os}	-0.754
Ir ₂ Ge	T _{Ir}	0.351
	H_{Ir}	0.152
	H_{Ge}	0.212
	B_{IrIr}	0.218
Pt ₂ Ge		

Table S10. The computed ΔG_{H^*} values for TM₂Ge systems. The symbol "--" indicates that structures with adsorbed H* cannot be obtained.

Systems	Adsorption sites	σ _{1S} centers (eV)
Co ₂ Si	T _{Co}	-4.026
	B _{Co-Co}	-4.855
Fe ₂ Si	T_{Fe1}	-3.255
Pd ₂ Si	H_{Pd}	-4.888
	H _{Si}	-4.870
Pt ₂ Si	T _{Pt}	-3.816

Table S11. The σ_{1S} centers for H adsorption on TM₂Si (TM=Co, Fe, Pd and Pt) monolayers.

Systems	Adsorption sites	σ _{1S} centers (eV)
Co ₂ Ge	T _{Co}	-3.994
	B _{Co-Co}	-4.778
Ni ₂ Ge	T _{Ni}	-4.323
Fe ₂ Ge	T _{Fe1}	-3.192
Pd ₂ Ge	H _{Pd}	-5.104
	H_{Ge}	-5.116
Ir ₂ Ge	H_{Ir}	-6.285
	H_{Ge}	-6.918
	B _{IrIr}	-7.005

Table S12. The σ_{1S} centers for H adsorption on TM₂Ge (TM=Co, Ni, Fe, Pd and Ir) monolayers.

n	σ_{1S} centers (eV)		
	Co ₂ Si	Co ₂ Ge	Ni ₂ Ge
1	-4.855	-4.778	-4.840
3	-4.708	-4.774	-4.745
6	-4.881	-4.679	-4.918
9	-5.062	-4.669	-4.866
12	-4.984	-4.820	-4.910
15	-4.959	-4.770	-5.066
18	-4.935	-4.788	-5.107
21	-5.062	-4.916	-5.210
24	-5.281	-5.073	-5.268
27	-5.407	-5.167	-5.475

Table S13. The σ_{1S} centers for H adsorption on the Co₂Si, Co₂Ge and Ni₂Ge monolayers under the different H coverage.