Supporting Information

Constructing built-in electric field in 2D/2D Schottky heterojunction for efficient alkaline seawater electrolysis

Hongjun Chen,^a Liming Deng,^a Sheng Zhao,^a Shuyi Liu,^a Feng Hu,^{*a} Linlin Li,^{*a} Jianwei Ren^b and Shengjie Peng^{*ac}

^a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

E-mail: fenghu@nuaa.edu.cn (Feng Hu), lilinlin@nuaa.edu.cn (Linlin Li), pengshengjie@nuaa.edu.cn (Shengjie Peng)

^b Department of Mechanical Engineering Science, University of Johannesburg, 2092 Johannesburg, South Africa

° State Key Laboratory of High Performance Ceramics and Superfine Microstructure

Fig. S1. SEM image of multilayer MXene.

Fig. S2. (a) High-power; (b) low-power SEM images of $Co_3(PO_4)_2$.

Fig. S3. Tauc plots converted from UV–vis diffuse reflection spectra of $Co_3(PO_4)_2$ and MXene.

Fig. S4. Co K-edge EXAFS oscillation function of Co foil, CoO, $Co_3(PO_4)_2$ and $Co_3(PO_4)_2@MX$ ene.

Fig. S5. Cyclic voltammetry of (a) $Co_3(PO_4)_2$ @MXene, (b) Pt/C, (c) $Co_3(PO_4)_2$, and (d) MXene at different scanning rates (20, 40, 60, 80, 100, and 120 mV s⁻¹) in the range of 0.1~ 0.3 V vs. RHE potentials, used to estimate double layer capacitance (C_{dl}).

Fig. S6. (a) LSV polarization diagram, (b) Tafel slope diagram of $Co_3(PO_4)_2$, MXene and $Co_3(PO_4)_2$ @MXene in seawater electrolyte.

Fig. S7. (a) Tafel slope diagram, (b) EIS curves of $Co_3(PO_4)_2$, MXene and $Co_3(PO_4)_2$ @MXene in alkaline seawater.

Fig. S8. (a) High-power and (b) low-power SEM images of $Fe_3(PO_4)_2$. (c) High-power and (d) low-power SEM images of $Fe_3(PO_4)_2$ @MXene.

Fig. S9. XRD pattern of $Fe_3(PO_4)_2$ and $Fe_3(PO_4)_2$ @MXene.

Fig. S10. (a) High-power and (b) low-power SEM images of $Ni_3(PO_4)_2$. (c) High-power and (d) low-power SEM images of $Ni_3(PO_4)_2$ @MXene.

Fig. S11. XRD pattern of $Ni_3(PO_4)_2$ and $Ni_3(PO_4)_2$ @MXene.

Fig. S12. LSV polarization curve of in of $M_3(PO_4)_2$ (M = Ni, Co, Fe) in 1 M KOH electrolyte.

Fig. S13. (a) LSV polarization curve, (b) Tafel slope diagram, and (c) EIS curves of in of $M_3(PO_4)_2@MXene$ (M = Ni, Co, Fe) in 1 M KOH electrolyte.

Fig. S14. The two-electrode AEM water electrolyzer.

Table S1. A comparison of HER activity measured for $Co_3(PO_4)_2$ @MXene with other representative cobalt-based catalysts reported that HER catalysts used 1 M KOH as an electrolyte.

Catalyst	Overpotential (mV) @10 mA cm ⁻²	Stability (h)	References
Co ₃ (PO ₄) ₂ @MXene	48	100@10 mA cm ⁻² (1 M KOH) 165@500 mA cm ⁻² (1 M KOH seawater)	This work
RuCo-CAT/CC	38	15@10 mA cm ⁻²	Adv. Funct. Mater. 2023, 13, 2204177.
Pt@CoN ₄ -G	39	12@10 mA cm ⁻²	Adv. Funct. Mater. 2023, 33, 2303189.
NiCoVP	42	30@10 mA cm ⁻²	J. Mater. Chem. A 2021, 9, 12203-12213.
Fe@Co ₉ S ₈ -hcp	44.1	20@600 mA cm ⁻²	Adv. Funct. Mater. 2023, 33, 2210298.
NiCoP-WO _x	49	60@10 mA cm ⁻²	J. Mater. Chem. A 2021, 9, 10909-10920.
CuCo-CAT	52	10@10 mA cm ⁻²	Adv. Mater. 2021, 33, 2106781.
CoNiRu-NT ₃	52	48@10 mA cm ⁻²	Adv. Mater. 2022, 34, 2107488.
CoF ₂	54	110@10 mA cm ⁻²	Adv. Sci. 2022, 9, 2103567.
$CoMo_2S_4$	55	24@100 mA cm ⁻²	Adv. Funct. Mater. 2021, 31, 2103732.

Co _{3-x} Ni _x O ₄	57	300@20 mA cm ⁻²	ACS Catal. 2021, 11, 8174-8182.
NiCoRu _{0.2} /SP	59	100@10 mA cm ⁻²	Appl. Catal. B Environ. 2023, 331, 122710.
10:MoCo-VS ₂ /CC	63	36@10 mA cm ⁻²	J. Mater. Chem. A 2022, 10, 9067-9079.
V-SRCO	72.3	57@10 mA cm ⁻²	Adv. Energy Mater. 2023, 13, 2301779.
CoTe ₂ /CoP	80	20@100 mA cm ⁻²	Appl. Catal. B Environ. 2023, 329, 122551.
Ce-CoP@CC	81	25@10 mA cm ⁻²	Adv. Energy Mater. 2023, 13, 30.
NiCo ₂ S ₄ /ReS ₂	85	15@10 mA cm ⁻²	Adv. Funct. Mater. 2022, 33, 2210072.
1T Co-WS ₂ /NiTe ₂ /Ni	88	24@50 mA cm ⁻²	Nano Energy 2022, 102, 107712.
$Co_{0.5}W_{0.5}S_x$	110	10@10 mA cm ⁻²	J. Mater. Chem. A. 2021, 9, 11359-11369.
Fe-Co-Ni MOF	116	48@10 mA cm ⁻²	J. Am. Chem. Soc. 2022, 144, 3411-3428.
Mo-Co _{0.85} SeVSe/NC	151	12@100 mA cm ⁻²	Adv. Funct. Mater. 2021, 32, 2109556.
CoP _x /CNS	171	60@16 mA cm ⁻²	Angew. Chem. Int. Ed. 2020, 59, 21360-21366.

Catalyst Potential (V)		Stability (h)	References
Co3(PO4)2@MXene NiFe LDH	1.81@100 mA cm ⁻² 2.01@500 mA cm ⁻²	165 @500 mA cm ⁻²	This work
CoFe-Ni ₂ P/Ni-felt CoFe-Ni ₂ P/Ni-felt	1.738@100 mA cm ⁻² 1.891@500 mA cm ⁻²	100 @500 mA cm ⁻²	Adv. Energy Mater. 2023, 13, 2301475.
$Cr-Co_xP \parallel Cr-Co_xP$	1.54@10 mA cm ⁻² 1.85@100 mA cm ⁻² 2.01@200 mA cm ⁻²	16 @100 mA cm ⁻²	Adv. Funct. Mater. 2023, 33, 2214081.
CoP _x CoP _x @FeOOH	1.71V@100 mA cm ⁻² 1.867@500 mA cm ⁻²	80 @500 mA cm ⁻²	Appl. Catal. B Environ. 2021, 294, 120256.
Ni ₂ P-Fe ₂ P/NF Ni ₂ P-Fe ₂ P/NF	1.811@100 mA cm ⁻² 2.004@500 mA cm ⁻²	48 @100 mA cm ⁻² 38 @500 mA cm ⁻²	Adv. Funct. Mater. 2020, 31, 2006484.
BDD Cu ₂ S@NiS@Ni/NiMo	1.68@100 mA cm ⁻² 1.82@500 mA cm ⁻²	2000 @500 mA cm ⁻²	Adv. Energy Mater. 2023, 33, 2302263.
NiMoN∥ S-(Ni,Fe)OOH	1.661@100 mA cm ⁻² 1.837@500 mA cm ⁻²	100 @100 mA cm ⁻² 100 @500 mA cm ⁻²	Energy Environ. Sci. 2020, 13, 3439-3446.
N-CDs/NiFe LDH/NF	1.56@100 mA cm ⁻²	20 @10 mA cm ⁻²	Nano Res. 2022, 15, 7063-7070.

 Table S2. Comparison of catalytic performance for alkaline seawater electrolysis

Table S3. Comparison of catalytic performance for alkaline water/seawater electrolysisin $Co_3(PO_4)_2$ @MXene || NiFe LDH electrolyzer.

Catalyst	Potential (V)	Stability (h)	References
Co3(PO4)2@MXene NiFe LDH	1.71@500 mA cm ⁻² 2.0@1000 mA cm ⁻²	50 @500 mA cm ⁻²	This work
CoFe-Ni ₂ P/Ni-felt CoFe-Ni ₂ P/Ni-felt	2.25@1 A cm ⁻² 2.79@3 A cm ⁻² (6 M KOH seawater)	350 @1 A cm ⁻²	Adv. Energy Mater. 2023, 13, 2301475.
NiFe@DG Pt/C	1.496@10 mA cm ⁻² 1.602@100 mA cm ⁻² (1 M KOH seawater)	1000 @10 mA cm ⁻²	ACS Nano 2023, 17, 18372-18381.
Ni-MoN SSM	1.635@100 mA cm ⁻² 1.783@500 mA cm ⁻² (1 M KOH seawater) 1.613@100mA cm ⁻² 1.7@500 mA cm ⁻² (1 M KOH)	100 @100 mA cm ⁻² 100 @500 mA cm ⁻²	Adv. Mater 2022, 34, 2201774.
NiMoN NiMoN@NiFeN	1.581@100 mA cm ⁻² 1.77@500 mA cm ⁻² (1 M KOH seawater)	100 @100 mA cm ⁻² 100 @500 mA cm ⁻²	Nat. Commun. 2019, 10, 5106.
NiP₂-FeP₂/Cu _{NW} /CF ∥ NiFe-LDH/NF	1.76@100 mA cm ⁻² (1 M KOH) 1.93@100 mA cm ⁻² (1 M KOH + 0.6 M NaCl)	/	ACS Energy Lett. 2021, 6, 354.