Supporting Information for

Screening of Red Phosphorus Supported Transition Metal Single-atom Catalysts for Efficient Photocatalytic Water Splitting H₂ Generation

Lu Lu,^[a] Mingzi Sun,^[a] Tong Wu,^[a] Qiuyang Lu,^[a] Baian Chen,^[a] Cheuk Hei Chan,^[a] Hon Ho Wong,^[a] Bolong Huang^{*,[a][b]}

[a]Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
[b]Research Centre for Carbon-Strategic Catalysis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

*E-mail: <u>bhuang@polyu.edu.hk</u> (B. H.)

Calculation Setup

A comprehensive computational simulation has been taken on pristine red phosphorus (RP) and twenty-nine kinds of single-atom (SA) transition metal (TM) anchored TM-RP catalysts under density functional theory (DFT) with CASTEP code.¹ The GGA-PBE²⁻⁴ functional, LBFGS algorithm, and ultrasoft pseudopotentials have been set as basic computational parameters for all the geometry optimization and single-point energy calculation throughout the work. For the solution of the Kohn-Sham (KS) equation, we apply the ensemble DFT approach of Marzari et al. for the warranty of electronic minimization as well as convergence requirements.⁵ The cutoff energy in water adsorption (H₂O_{ad}) models has been set as 380 eV for pristine-RP and TM-RP. The k-point set is $2 \times 2 \times 1$ for all the energy minimizations, and the SCF tolerance is 5.0×10^{-7} eV/atom. The detailed convergence tolerance minimizer parameters have been indicated as follows: the energy tolerance is 5.0×10^{-6} eV/atom; the Max. Hellmann-Feynman force per atom is set as 0.01 eV/Å; the Max. stress is 0.02 GPa; and the Max. displacement is 5.0×10^{-4} Å. The RP (001) surface is cut from fully relaxed bulk Hittorf's phosphorus,⁶ with two monolayers containing 84 P atoms, resulting in a lattice parameter of 9.27 Å in length-A orientation and 9.21 Å in length-B orientation respectively. The vacuum thickness has been set as 20 Å, with a length of 40.95 Å obtained in C-orientation. The top view of pristine-RP and twenty-nine different kinds of TM atom anchored on RP (001) surfaces has been indicated in Fig. S1. During the H₂O_{ad} and H-adsorption (H_{ad}) process, the single-atom catalyst (SAC) surface has been constrained to focus on the key behaviors and adsorption properties of adsorbates. The H_{ad} energy (ΔE_{H}) has been calculated through the following equation^{7, 8}:

$$\Delta E_{\rm H} = E_{\rm H^*} - E_* - \frac{1}{2}E(H_2) \tag{1}$$

in which * represents the pristine RP surface without adsorption, and H* indicates the surface adsorbed with H.

The Gibbs free energy change ($\Delta G_{\text{H}*}$) between the gas phase and the adsorbed state of hydrogen has been adopted as the descriptor for evaluating HER energy barriers. As proposed by Nørskov et al, $\Delta G_{*\text{H}}$ can be calculated by the following equation:

$$\Delta G_{\mathrm{H}^*} = \Delta E_{\mathrm{H}^*} + \Delta E_{\mathrm{ZPE}} - T \Delta S_{\mathrm{H}} \tag{2}$$

in which $\Delta E_{\text{H*}}$ indicates the chemisorption energy, ΔE_{ZPE} represents the zero point energy change, and ΔS_{H} represents the entropy change of H adsorption.⁷ The Hadsorption energies ($\Delta E_{\text{H*}}$) on different TM-RP facets are obtained via the following equation:

$$\Delta E_{\rm H^*} = E_{\rm (slab + H^*)} - E_{\rm slab} - \frac{1}{2}E_{\rm H2}$$
(3)

where $E_{(\text{slab} + \text{H}^*)}$ means the total energy of the H-adsorption slab, E_{slab} indicates the energy of the pristine slab, and E_{H2} represents the energy of H₂. The zero point energy can be calculated as below:

$$\Delta E_{\rm ZPE} = ZPE_{\rm H^*} - \frac{1}{2}ZPE_{\rm H2} \tag{4}$$

in which ZPE_{H^*} and ZPE_{H^2} are zero-point energies of H in adsorbed and gas state, respectively. The reported value of ΔE_{ZPE} is 0.04 eV,⁷ and it has been considered as a reference value for all the TM-RP models calculated in this work. Since the vibrational

entropy of hydrogen in the adsorbed phase (S_{H^*}) is quite small, the ΔS_H can be calculated as follows:

$$\Delta S_{\rm H} = S_{\rm H^*} - \frac{1}{2}S_{\rm H2} \approx -\frac{1}{2}S_{\rm H2} \tag{5}$$

Herein, $S_{\rm H2}$ stands for the entropy of hydrogen in the gas phase under standard state. At room temperature (T = 298 K), the $TS_{\rm H2}$ of gaseous H₂ is 0.41 eV,⁹ and the $T\Delta S_{\rm H}$ is calculated to be -0.204 eV.^{10, 11} As a result, $\Delta G_{\rm H*}$ can be calculated as:

$$\Delta G_{\mathrm{H}^*} = \Delta E_{\mathrm{H}^*} + 0.24 \text{ eV} \tag{6}$$

The formation energy (E_{Form}) values of TM-RPs can be calculated from the following Equation:

$$E_{\text{Form}} = E_{\text{TM-RP}} - E_{\text{TM}} - E_{\text{RP}} \tag{7}$$

in which the E_{TM-RP} is the total energy of each TM-RP SAC model, E_{TM} is the energy of one SA-TM cut from the configuration of its corresponding SAC model, and E_{RP} is the total energy of the substrate RP surface.

Figure S1. The schematic diagram of electronic modulation induced by the anchored SA-TMs.

Figure S2. Configurations of pristine-RP and twenty-nine kinds of anchored active TM atoms on RP (001) surface.

Figure S3. (a) The average bond length (TMs coordinated to surrounding P atoms) of twenty-nine active SA-TM atom types anchored on the RP (001) surface. (b) Mulliken charge analysis of twenty-nine active SA-TM atom types that anchored on RP (001) surface.

	ЩВ	IVB	VB	VIB	VIIB	VШ	VIII	VШ	IB	ЦB		2.0
uber 4	0.00	0.01	0.20	0.38	0.01	0.30	-0.01	0.54	-0.05	0.78	-3d	- 1.5
inN p	-0.12	-0.15	-0.04	0.05	-0.24	-0.14	0.24	1.08	0.19	1.30	-4d	- 0.5 (e) - 0.0 - 0.5 0.5
Perio		-0.34	-0.15	-0.65	-0.68	-0.55	-0.17	0.58	-0.24	1.93	-5d	1.0 🛱 1.5
$\Delta G_{\rm vv}$ (eV)												

 ΔG_{H^*} (eV) Figure S4. The mapping of ΔG_{H^*} for active TM sites for twenty-nine kinds of TM-RP SACs.

Figure S5. Band structure alignments in the scale of vacuum level (left) and SHE (right) for pristine-RP and twenty-nine types of TM-RP SACs. The blue and green dashed lines in the horizontal direction represent the redox potentials of water (H⁺/H₂ and O_2/H_2O) at pH = 7 (a) and pH = 14 (b) respectively.

The pH change will alter the standard redox potentials of water based on Nernst equations:

$$E^{\text{HER}} (\text{H}^+/\text{H}_2) = -4.44 \text{ eV} + \text{pH} \times 0.059 \text{ eV}$$

$$E^{\text{OER}} (\text{O}_2/\text{H}_2\text{O}) = -5.67 \text{ eV} + \text{pH} \times 0.059 \text{ eV}$$
(8)
(9)

As a result, the photocatalytic reaction tendency for both HER and OER can be regulated via pH control. With the increase in pH, both the potential levels of H^+/H_2 and O_2/H_2O will move up, leading to a driving force decrease in HER and a corresponding increase in OER. That is, the HER and OER reaction tendency can be balanced for overall photocatalytic water splitting with the variation of pH. For instance, when pH = 7, the thermodynamic HER and OER driving force of pristine-RP, V-RP, Cr-RP, Nb-RP, Ag-RP, Cd-RP, Hf-RP, and Ta-RP are in similar values, exhibiting their great potential for overall water splitting at neutral condition. While in the highly alkaline conditions (pH = 14), except Y-RP and La-RP, pristine-RP and most TM-RP SAC candidates will lose their HER capacity from the perspective of thermodynamics.

References

- 1. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, *Zeitschrift für Kristallographie Crystalline Materials*, 2005, **220**, 567-570.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 3. P. J. Hasnip and C. J. Pickard, *Computer Physics Communications*, 2006, **174**, 24-29.
- 4. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Physical Review B*, 1992, **46**, 6671-6687.
- 5. N. Marzari, D. Vanderbilt and M. C. Payne, *Physical Review Letters*, 1997, **79**, 1337-1340.
- 6. H. Thurn and H. Krebs, *Angewandte Chemie*, 1966, **78**, 1101-1102.
- 7. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *Journal of The Electrochemical Society*, 2005, **152**, J23-J26.
- 8. U. Kerketta, A. B. Tesler and P. Schmuki, *Catalysts*, 2022, **12**, 1223.
- 9. Y. Liu, G. Yu, G.-D. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *Angewandte Chemie International Edition*, 2015, **54**, 10752-10757.
- 10. N. N. T. Pham, S. G. Kang, H.-J. Kim, C. Pak, B. Han and S. G. Lee, *Applied Surface Science*, 2021, **537**, 147894.
- 11. Z. Liang, X. Zhong, T. Li, M. Chen and G. Feng, *ChemElectroChem*, 2019, 6, 260-267.