Supporting Information

Atomically Dispersed Pd on ZrO₂ for Efficient Nitrite

Electroreduction to Ammonia

Wenyu Du, Zeyi Sun, Chaofan Qiang, Kai Chen, Ke Chu*

School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.

*Corresponding author. chuk630@mail.lzjtu.cn (K. Chu)

Experimental section

7.40 g of $ZrO(NO_3)_2 \cdot xH_2O$ and 19.22 g of urea were dissolved in 80 mL of deionized water. And the mixed solution was transferred to a Teflon-lined stainless steel autoclave and kept under 160 °C for 20 h. After cooling, the precipitates were washed with deionized water several times and dried at 80 °C for 12 h. The dried precipitates were then calcined in a muffle furnace at 500 °C for 3 h to obtain ZrO_2 . To prepare Pd₁/ZrO₂, an impregnation solution was used by dissolving 0.30 g of PdCl₂ in 30 mL of deionized water. The as-prepared ZrO_2 was then immersed in impregnation solution for 1 h, followed by drying under vacuum at 110 °C to obtain Pd₁/ZrO₂.

Electrochemical experiments

Electrochemical measurements were carried out on a CHI-760E electrochemical workstation using a three-electrode cell, with Ag/AgCl (saturated KCl), Pt foil and catalyst coated on carbon cloth (CC, 1×1 cm²) as reference, counter and working electrodes, respectively. All potentials were referenced to reversible hydrogen electrode (RHE) in terms of E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.198 V + 0.059 × pH. The CC substrate $(1 \times 1 \text{ cm}^2)$ was pretreated by soaking it in 0.5 M H₂SO₄ for 12 h, and then washed with deionized water several times and dried at 60 °C for 24 h. The catalyst ink was prepared by dispersing 1 mg of the catalysts in 100 μ L of ethyl alcohol containing 5 µL of Nafion (5 wt%) under ultrasonication. The catalyst inks were dropped onto CC $(0.2 \text{ mg} \cdot \text{cm}^{-2})$ to form the working electrodes. The electrochemical NO₂RR measurements were performed 0.5 M Na₂SO₄ solution containing 0.1 M NaNO₂ using an H-type electrochemical cell separated by a Nafion 211 membrane. After each chronoamperometry test at certain potential for 1 h, the liquid products were analyzed by various colorimetric methods using UV-vis absorbance spectrophotometer (MAPADA P5), while the gas products (H2, N2) were analyzed by gas chromatography (Shimadzu GC2010).

Determination of NH₃

The generated NH₃ was determined by the indophenol blue method¹. Typically, 0.5 mL of electrolyte was removed from the electrochemical reaction vessel and

diluted 50 times with deionized water. Then 2 mL of diluted solution was removed into a clean vessel followed by sequentially adding NaOH solution (2 mL, 1 M) containing $C_7H_6O_3$ (5 wt.%) and $C_6H_5Na_3O_7$ (5 wt.%), NaClO (1 mL, 0.05 M), and $Na_2Fe(CN)_5NO\cdot2H_2O$ (0.2 mL, 1wt.%) aqueous solution. After the incubation for 2 h at room temperature, the mixed solution was subjected to UV-vis measurement using the absorbance at 655 nm wavelength. The concentration-absorbance curves were calibrated by the standard NH₄Cl solution with a series of concentrations^{2, 3}.

Calculations of NH₃ yield rate and NH₃-Faradaic efficiency

$$NH_3 \text{ yield rate } (\mu \cdot h^{-1} \cdot mg_{cat}^{-1}) = \frac{\mathcal{C}_{NH3} \times V}{t \times A}$$
(1)

T 7

$$NH_{3} - Faradaic efficiency(\%) = \frac{6 \times F \times \mathcal{C}_{NH3} \times V}{17 \times Q} \times 100\%$$
(2)

where $c_{\rm NH3}$ (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time, A (cm⁻²) is the surface area of CC (1 × 1 cm²), F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the quantity of applied electricity.

Characterizations

X-ray diffraction (XRD) pattern was collected on a Rigaku D/max 2400 diffractometer. X-ray photoelectron spectroscopy (XPS) analysis was conducted on a PHI 5702 spectrometer. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were recorded on a Tecnai G2 F20 microscope. Spherical aberration-corrected scanning transmission electron microscopy (AC-STEM) was performed on a Titan Cubed Themis G² 300 microscope. Online differential electrochemical mass spectrometry (DEMS, QAS 100) was performed by QAS 100 spectrometer. Various products during the electrolysis reactions were monitored at different values of m/z ionic signals.

Calculation details

Cambridge sequential total energy package (CASTEP) module was employed for the density functional theory (DFT) calculations⁴. Electron-exchange correlations were represented by the functional of Perdew-Burke-Ernzerhof (PBE) of the generalized gradient approximation (GGA). The van der Waals interactions were evaluated by employing the Grimme (DFT+D) scheme. The convergence criteria for structure optimization were set to: (1) energy tolerance of 1×10^{-5} eV, (2) maximum force tolerance of 0.02 eV Å⁻¹, (3) Monkhorst-Pack k-point sampling: $2 \times 2 \times 1$. The cutoff energy for the plane wave basis was set at 420 eV. Monoclinic ZrO₂ (-111) was modeled by a 3×3 supercell, and a vacuum region of 15 Å was used to separate adjacent slabs.

The free energies (Δ G, 298 K) for each reaction were given after correction⁵:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{3}$$

where ΔE is the adsorption energy, ΔZPE is the zero-point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state.

The Forcite module was employed for the MD simulations⁶. The electrolyte system was modeled by a cubic cell with placing catalyst at the center of the cell and randomly filling 1000 H₂O, 50 NO molecules, and 50 H atoms. The force field type was chosen as universal. After geometry optimization, the MD simulations were carried out with the total simulation time of 1 ns at a time step of 1 fs. The radial distribution function (RDF) is calculated by⁷:

$$g(r) = \frac{dN}{4\pi\rho r^2 dr} \tag{4}$$

where dN is the amount of NO₂⁻ in the shell between the central particle *r* and *r*+*dr*, ρ is the number density of NO₂⁻ and H.

Figure S1. TEM image of ZrO_{2.}

Figure S2. XANES fitted curve to determine the average Pd valence state of Pd_1/ZrO_2 .

Figure S3. XPS Pd 3d spectra of Pd_1/ZrO_2 .

Figure S4. PDOS profiles of ZrO_2 and Pd_1/ZrO_2 .

Figure S5. Average potential profiles along c-axis direction for calculating the work functions (Φ) of (a) ZrO₂ and (b) Pd₁/ZrO₂.

Figure S6. UV-vis absorption spectra of NH_4^+ assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of NH_3 concentrations.

Figure S7. Chronoamperometry test of ZrO_2 in H cell.

Figure S8. Comparison of NO₂RR performance between ZrO_2 and Pd_1/ZrO_2 .

Figure S9. CV measurements at different scanning rates and calculated electrochemically active surface area (ECSA) for (a, b) ZrO₂, (c, d) Pd₁/ZrO₂.

Figure S10. ECSA-normalized NH $_3$ yield rate and FE_{NH3} of ZrO $_2$ and Pd $_1$ /ZrO $_2$ at -0.6 V.

Figure S11. Amounts of produced NH_3 on Pd_1/ZrO_2 under different conditions: (1) electrolysis in NO_2 -containing solution at -0.6 V, (2) before electrolysis, (3) electrolysis in NO_2 -free solution at -0.6 V; (4) electrolysis in NO_2 -containing solution at open-circuit potential (OCP).

Figure S12. Alternating cycling test on Pd_1/ZrO_2 with/without NO_2^- at -0.6 V.

Reaction cooridinate

Figure S13. Free energy diagrams of various NO₂RR pathways (NHO/NOH) on ZrO₂.

Figure S14. Free energy diagrams of various NO₂RR pathways (NHO/NOH) on Pd_1/ZrO_2 .

Figure S15. Optimized structures of the reaction intermediates involved in NHO/NOH pathways on ZrO₂.

Figure S16. Optimized structures of the reaction intermediates involved in NHO/NOH pathways on Pd_1/ZrO_2 .

Figure S17. Online DEMS spectra of ZrO₂ during NO₂RR electrolysis at -0.6 V.

Figure S18. *NO₂/*H snapshots of Pd_1/ZrO_2 before and after simulation.

Sample	Shell	CN	R (Å)	σ^2 (10 ⁻³ Å)	$ \Delta E_0 $ (eV)	R factor
Pd ₁ /ZrO ₂	Pd-O	1.25	2.01	6.1	4.9	0.12
	Pd-Zr	1.17	2.78			

Table S1. Pd K-edge EXAFS fitting results of Pd_1/ZrO_2 .

CN is the coordination number, R is interatomic distance, σ^2 is Debye-Waller factor, ΔE_0 is edge-energy shift, R factor is used to value the goodness of the fitting.

Catalyst Electrolyte		NH3 yield rate (μmol h ⁻¹ cm ⁻²)	FE _{NH3} (%)	Potential (V vs RHE)	Ref
P-TiO ₂ /TP	0.1 M Na ₂ SO ₄ (0.1 M NO ₂ ⁻)	560.8	90.6	-0.6 V	8
Cu ₃ P NA/CF	0.1 M PBS (0.1 M NaNO ₂)	95.7±2.1	91.2±2.5	-0.5 V	9
Ag@NiO/CC	0.1 M NaOH (0.1 M NaO ₂)	338.3	96.1	-0.7 V	10
CoP NA/TM	0.1 M PBS (500 ppm NO ₂ ⁻)	132.7±3.0	90.0±2.3	-0.2 V	11
ITO@TiO ₂ /TP	0.5 M LiClO ₄ (0.1 M NO ₂)	411.3	82.6	-0.5 V	12
Pd/CuO NOs	0.1 M K ₂ SO ₄ (0.01 M KNO ₂)	53.3	91.8	-1.5 V	13
Ni@MDC	0.1 M NaOH (0.1 M NO ₂ -)	300	65.4	-0.8 V	14
CF@Cu ₂ O	0.1 M PBS (0.1 M NaNO ₂)	441.8	94.2	-0.6 V	15
Ni-TiO ₂ /TP	0.1 M NaOH (0.1 M NO ₂ -)	380.27	94.89	-0.5 V	16
Pd ₁ /ZrO ₂	0.1 M Na ₂ SO ₄ (0. 1 M NO ₂ -)	438.06	96.75	-0.6 V	This Work

Table S2. Comparison of the optimum NH_3 yield and FE_{NH3} for the recently reported state of the art NO_2RR electrocatalysts at ambient conditions.

References

- 1. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction, *Nat. Mater.*, 2013, **12**, 836.
- 2. G. W. WATT and J. D. CHRISP, A spectrophotometric method for the determination of hydrazine, *Anal. Chem.*, 1952, **24**, 2006-2008.
- 3. P. Li, Z. Jin, Z. Fang and G. Yu, A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate, *Energy Environ. Sci.*, 2021, **14**, 3522-3531.
- S. J. Clark*, M. D. SegalIII, C. J. PickardII, P. J. HasnipIII, M. I. J. ProbertIV, K. RefsonV and M. C. PayneII, First principles methods using CASTEP, *Z. Kristallogr.-Cryst. Mater.*, 2005, 220, 567–570.
- J. Wang, J. Liang, P. Liu, Z. Yan, L. Cui, L. Yue, L. Zhang, Y. Ren, T. Li, Y. Luo, Q. Liu, X.-E. Zhao, N. Li, B. Tang, Y. Liu, S. Gao, A. M. Asiri, H. Hao, R. Gao and X. Sun, Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction, *J. Mater. Chem. A*, 2022, **10**, 2842-2848.
- K. Chu, Y. Luo, P. Shen, X. Li, Q. Li and Y. Guo, Unveiling the synergy of O-vacancy and heterostructure over MoO_{3-x}/MXene for N₂ electroreduction to NH₃, *Adv. Energy Mater.*, 2021, 12, 2103022.
- X. Li, P. Shen, X. Li, D. Ma and K. Chu, Sub-nm RuO_x clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia, *ACS Nano*, 2023, 17, 1081-1090.
- L. Ouyang, X. He, S. Sun, Y. Luo, D. Zheng, J. Chen, Y. Li, Y. Lin, Q. Liu, A. M. Asiri and X. Sun, Enhanced electrocatalytic nitrite reduction to ammonia over P-doped TiO₂ nanobelt array, *J. Mater. Chem. A*, 2022, **10**, 23494-23498.
- J. Liang, B. Deng, Q. Liu, G. Wen, Q. Liu, T. Li, Y. Luo, A. A. Alshehri, K. A. Alzahrani, D. Ma and X. Sun, High-efficiency electrochemical nitrite reduction to ammonium using a Cu₃P nanowire array under ambient conditions, *Green Chem.*, 2021, 23, 5487-5493.
- Q. Liu, G. Wen, D. Zhao, L. Xie, S. Sun, L. Zhang, Y. Luo, A. Ali Alshehri, M. S. Hamdy, Q. Kong and X. Sun, Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis, *J. Colloid Interface Sci.*, 2022, 623, 513-519.
- G. Wen, J. Liang, Q. Liu, T. Li, X. An, F. Zhang, A. A. Alshehri, K. A. Alzahrani, Y. Luo, Q. Kong and X. Sun, Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray, *Nano Res.*, 2022, 15, 972-977.
- S. Li, J. Liang, P. Wei, Q. Liu, L. Xie, Y. Luo and X. Sun, ITO@TiO₂ nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH₃ production under ambient conditions, *eScience*, 2022, 2, 382-388.
- S. Liu, L. Cui, S. Yin, H. Ren, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, Heterointerfacetriggered electronic structure reformation: Pd/CuO nano-olives motivate nitrite electroreduction to ammonia, *Appl. Catal. B*, 2022, **319**, 121876.
- X. He, X. Li, X. Fan, J. Li, D. Zhao, L. Zhang, S. Sun, Y. Luo, D. Zheng, L. Xie, A. M. Asiri, Q. Liu and X. Sun, Ambient electroreduction of nitrite to ammonia over Ni nanoparticle supported on molasses-derived carbon sheets, *ACS Appl. Nano Mater.*, 2022, 5, 14246-14250.
- Q. Chen, X. An, Q. Liu, X. Wu, L. Xie, J. Zhang, W. Yao, M. S. Hamdy, Q. Kong and X. Sun, Boosting electrochemical nitrite–ammonia conversion properties by a Cu foam@Cu₂O catalyst, *Chem. Commun.*, 2022, 58, 517-520.

Z. Cai, C. Ma, D. Zhao, X. Fan, R. Li, L. Zhang, J. Li, X. He, Y. Luo, D. Zheng, Y. Wang, B. Ying, S. Sun, J. Xu, Q. Lu and X. Sun, Ni doping enabled improvement in electrocatalytic nitrite-to-ammonia conversion over TiO₂ nanoribbon, *Mater. Today Energy*, 2023, **31**, 101220.