Supporting Information

In situ growth of δ-MnO₂/C fibers as binder-free and free-standing cathode for advanced aqueous Zn-ions batteries

Ya<u>n</u> Li^a, Fei Zhang^a, Miaomiao Wu^a, Yong Guo^{a*}, Yuanyuan Liang^a, Reyihanguli Ababaikeri^a, Luyang Wang^a, Qiao Liu^a, Xingchao Wang^{ab*}

^aState Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

E-mail: xju1998@163.com; ichemabc@126.com

Expand

Figure S1. Flexibility of δ - MnO₂@CCFs.

Figure S2. SEM of δ -MnO₂.

Figure S4. SEM-EDS of a) CCFs and b) δ -MnO₂@CCFs.

Figure S5. XPS survey spectra of δ -MnO₂@CCFs.

Figure S6. Cycling performance of CCFs at 1.0 A g^{-1} .

Figure S7. a) The SEM of discharge to 0.01 V and b) charge to 1.80 V of δ -MnO₂@CCFs.

Figure S8 The photograph of a 3 cm \times 5 cm flexiblesoft-packaged batteries.

Materials	Current density (A g ⁻¹)	Capacity (mAh g ⁻¹)
δ-MnO2@CCFs	0.5	352 at 100th cycle (this work)
	3	132.3 at 7000th cycle (this work)
S-MnO ₂	1	122.9 at 1000th cycle ¹
MG10	1	$80 \text{ at } 1000 \text{th cycle}^2$
CN ₆₀₀ /MnO ₂	0.1	249 at 60th cycle ³
MnO ₂ nanospheres	0.3	358 at 100th cycle ⁴
MnO ₂ -NHCS	2	100 at 2000th cycle ⁵
MnO ₂ @PEDOT	2	213 at 2000th cycle ⁶
MGS	3	145 at 3000th cycle ⁷
S-MnO ₂	0.2	320 at 100th cycle ⁸
MnO ₂ @NC	2	90 at 2500th cycle ⁹

Table S1 Comparison of electrochemical performance of $\delta\text{-MnO}_2@CCFs$ and reported MnO_2 electrode for ZIBs

References

(1) Xu, S.; Wang, F.; Diao, Q.; Zhang, Y., Li, G., Exploring the Mechanism of Single-Crystal MnO₂ as Cathodes for Zinc Ion Batteries. *ChemPlusChem* **2023**, (88), e202300341.

(2) Cao, J.; Zhang, D.; Zhang, X.; Wang, S.; Han, J.; Zhao, Y.; Huang, Y., Qin, J., Mechanochemical Reactions of MnO₂ and Graphite Nanosheets as a Durable Zinc Ion Battery Cathode. *Appl. Surf. Sci.* **2020**, (534), 147630.

(3) Ni, Z.; Zhao, L.; Zhao, H.; Jin, C.; Ge, B., Li, W., In-Situ Growth of MnO₂ Nanorods on CN Generates a Heterostructure with the Stability for Zinc Ion Battery. *J. Alloys Compd.* **2023**, (967), 171834.

(4) Wang, J.; Wang, J.-G.; Liu, H.; Wei, C., Kang, F.J.J.o.M.C.A., Zinc Ion Stabilized MnO₂ Nanospheres for High Capacity and Long Lifespan Aqueous Zinc-Ion Batteries. *J. Mater. Chem. A* **2019**, (7), 13727-13735.

(5) Chen, L.; Yang, Z.; Cui, F.; Meng, J.; Jiang, Y.; Long, J., Zeng, X.J.M.C.F., Ultrathin MnO₂ Nanoflakes Grown on N-Doped Hollow Carbon Spheres for High-Performance Aqueous Zinc Ion Batteries. *Mater. Chem. Front.* **2020**, (4), 213-221.

(6) Chen, H.; Guo, J.; Tan, S.; Zhang, X.; Sang, Z., Yang, D.a., Dual-Modification of Oxygen Vacancies and Pedot Coating on MnO₂ Nanowires for High-Performance Zinc Ion Battery. *Appl. Surf. Sci.* **2023**, (638), 158057.

(7) Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X., Mai, L., Graphene Scroll-Coated α -MnO₂ Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery. *Small.* **2018**, (14), 1703850.

(8) Zhao, Y.; Zhang, P.; Liang, J.; Xia, X.; Ren, L.; Song, L.; Liu, W., Sun, X., Uncovering Sulfur Doping Effect in MnO₂ Nanosheets as an Efficient Cathode for Aqueous Zinc Ion Battery. *Energy Storage Mater.* **2022**, (47), 424-433.

(9) Li, X.; Zhou, Q.; Yang, Z.; Zhou, X.; Qiu, D.; Qiu, H.; Huang, X., Yu, Y., Unraveling the Role of Nitrogen-Doped Carbon Nanowires Incorporated with MnO₂ Nanosheets as High Performance Cathode for Zinc-Ion Batteries. *Energy Environ. Mater.* **2023**, (6), e12378.