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Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (qex) of the pure components C2H2, 

C2H6 and C2H4 for ZJNU-400, which should be converted to absolute loadings (q) 

firstly.

  (S1)
𝑞 = 𝑞𝑒𝑥 +

𝑝𝑉𝑝𝑜𝑟𝑒

𝑍𝑅𝑇

Here Z is the compressibility factor. The Peng-Robinson equation was used to estimate 

the value of compressibility factor to obtain the absolute loading, while the measure 

pore volume is also necessary.

In order to perform the IAST calculations, the single-component isotherm was fitted by 

the dual-site Langmuir-Freundlich (DSLF) adsorption model to correlate the pure-

component equilibrium data and further predict the adsorption of mixtures. The DSLF 

model is described as:

  (S2)

Here p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q 

is the adsorbed amount per mass of adsorbent (mol kg-1), qm1 and qm2 are the saturation 

capacities of sites 1 and 2 (mol kg-1), b1 and b2 are the affinity coefficients of sites 1 

and 2 (1/kPa), n1 and n2 are the deviations from an ideal homogeneous surface. To 

investigate the separation of binary mixtures, the adsorption selectivity is defined by

 (S3)

𝑆𝑖𝑗  =  

𝑥1
𝑥2

𝑦1
𝑦2

x1 and x2 are the absolute component loadings of the adsorbed phase in the mixture. 

These component loadings are also termed the uptake capacities. We calculate the 

values of x1 and x2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and 

Prausnitz.
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S1. Supporting Figures

Fig S1. Coordinated environment of tetranuclear manganese cluster. 

Fig S2. PXRD patterns of ZJNU-400 for simulated, as-synthesized and PXRD of in 

water and some organic solvent for three days. 
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Fig S3. Thermogravimetric analysis curve of ZJNU-400 for the as-synthesized sample. 
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Fig S4. (a) C2H2, (b) C2H6, and (c) C2H4 adsorption and desorption isotherms of ZJNU-

400.
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Fig S5. The fitting results of Qst for (a) C2H2, (b) C2H4, (c) C2H6 on ZJNU-400 by using 

adsorption isotherms at 273 K and 298 K.
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Fig S6. The desorption curves were recorded on the column at 50 ℃ under He flow of 

10 mL min-1.
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S2. Supporting Tables

Table S1. Crystal data and structure refinement for ZJNU-400. 

MOF ZJNU-400

Empirical formula C20H12Mn2N2O10

Formula weight 550.20

Wavelength (Å) 0.71073

Crystal system Monoclinic

Space group P21/n

a (Å) 15.3929(5)

b (Å) 12.4098(5)

c (Å) 17.0932(7)

α (º) 90

β (º) 90.9600(10)

γ (º) 90

Volume (Å3) 3264.7(2)

Z 4

Dc (g/cm3) 1.119

µ (mm-1) 0.814

F (000) 1104.0

Reflections collected 32743

Unique (Rint) 7465(0.0289)

Goodness-of-fit on F2 1.045

R1, wR2 [I>2σ(I)] 0.0238, 0.0650

R1, wR2 (all data) 0.0284, 0.0672

Largest diff. peak and hole (e/Å3) 0.34/-0.22

The guest molecules were highly disordered and could not be modeled properly, 

thus the SQUEEZE routine of PLATON was applied to remove the contributions to the 

scattering from the solvent molecules. The reported refinements are of the guest-free 

structures using the *.hkp files produced using the SQUEEZE routine.
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Table S2. The refined parameters for the Dual-site Langmuir-Freundlich equations fit 
for the pure isotherms of small gas molecule for ZJNU-400 at 298 K.

Adso

rbate

qm1

[mmol g-1]

b1

[kPa-1]

n1 qm2

[mmol g-1]

b2

[kPa-1]

n2 R2

C2H2 4.50407 0.0037 1.4211 0.50000 0.0834 1.0000 1.0000

C2H4 0.08199 0.3274 1.0986 3.65780 0.0094 1.2203 1.0000

C2H6 1.14899 0.0137 1.5495 2.31735 0.0336 1.0000 1.0000
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Table S3. C2H6/C2H4 (298K, 50:50) selectivity performance comparison of some 
previous reported MOFs.

Compound
C2H6 uptake

(cm3 g-1)

Sel. C2H6/C2H4

(v:v 50:50)
Reference

ZJNU-400 64 2.8 This work
STU-1 74.1 1.5 1

ZUL-C4 65.6 2.2 2
UiO-66-2Me 48.16 2.9 3

MOF-808-Bzz 49.28 1.9 4
NKU-200-Tb 60.25 2.1 5

Co-9-ina 84 2.7 6
BUT-150 96.3 1.15 7
Y-TATB 97.0 1.8 8

JNU-6-CH3 103.7 2.2 9
JNU-6 113.6 1.9 9

UIO-67-(NH2)2a 119.2 1.7 10
MAF-49 38.5 2.7 11

Ni-MOF 2 133 1.9 12
Co-TATBa 72.35 1.4 13

Ni(bdc)(ted)0.5 112 2.0 14
UTSA-30 47 3.8 15 

Fe2(O2)(dobdc) 73.7 4.4 16
Cu(Qc)2 41.4 3.4 17

Co(AIN)2 70.9 2.9 18
UiO-66-2CF3 19.2 2.5 19

ZIF-4 51.5 2.1 20
MUF-15 105.0 1.9 21
IRMOF-8 112.4 1.8 22
ZJU-121a 69.4 1.5 23

Azole-Th-1 100.2 1.4 24
UTSA-35 54.4 1.4 25

MIL-53(Al) 45.9 1.3 26
TJT-100 79 1.2 27
LIFM-28 22.4 1.1 28

aC2H6, C2H4 uptake, uptake ratio and IAST selectivity were all measured at 296 K. 
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