Supporting Information

A General Strategy to In Situ Construct CoSe₂-MSe_x@GA (M=Zn, Ni, Fe) Heterostructures for Effective Sodium Storage

Zhengzheng Xu,^a Yanjiao Li,^a Shiqi Li,^a Yingying Chen,^{*ab} Majid Farahmandjou,^b Guoxiu Wang,^b Hongxun Yang,^{*a} and Hao Tian^{*b}

^a School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China

^b Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia.

*Corresponding author.

Email: scyyh@just.edu.cn (Y. Chen); yhongxun@126.com (H. Yang); hao.tian@uts.edu.au (H. Tian)

Figure S1. XRD patterns of prussian blue analog precursors.

Figure S2. XRD patterns of CoSe₂@GA.

Figure S3. (a) XPS survey, (b) Co 2p, (c) Zn 2p and (d) Se 3d spectra of CoSe₂-ZnSe@GA.

Figure S4. (a) XPS survey, (b) Co 2p, (c) Ni 2p and (d) Se 3d spectra of CoSe₂-NiSe₂@GA.

Figure S5. C 1s high resolution XPS of (a) CoSe₂-FeSe@GA, (b) CoSe₂-ZnSe@GA and (c) CoSe₂-NiSe₂@GA.

Figure S6. N₂ adsorption-desorption isotherms and pore size distribution plots of CoSe₂-FeSe₂@GA, CoSe₂-ZnSe@GA, and CoSe₂-NiSe₂@GA.

Figure S7. SEM images of (a) Co-Co-PBAs, (b) CoSe₂ and (c) CoSe₂@GA.

Figure S8. (a) CV curves of $CoSe_2$ at 0.2 mV s⁻¹, (b) The charge–discharge profiles of $CoSe_2$ at 0.2 A g⁻¹.

Figure S9. CV curves at 0.2 mV s⁻¹ of (a) FeSe₂, (b) ZnSe, and (c) NiSe₂; The charge–discharge profiles of (a) FeSe₂, (b) ZnSe, and (c) NiSe₂ at the 1st, 2nd, 5th and 10th cycle.

Figure S10. CV curves at different scan rates (from 0.2 to 1 mV s⁻¹) of (a) $CoSe_2$ -ZnSe@GA, (b) $CoSe_2$ -NiSe_2@GA, (c) $CoSe_2$. Log(i) vs log(v) plots of (d) $CoSe_2$ -ZnSe@GA, (e) $CoSe_2$ -NiSe_2@GA and (f) $CoSe_2$.

Figure S11. Pseudocapacitance contribution rate at different scan rate of (a) CoSe₂-ZnSe@GA and CoSe₂, (b) CoSe₂-NiSe₂@GA and CoSe₂.

Figure S12. (a) GITT voltage curves and (b) Na⁺ diffusion coefficients for CoSe₂-ZnSe@GA and CoSe₂. (c) GITT voltage curves and (d) Na⁺ diffusion coefficients for CoSe₂-NiSe₂@GA and CoSe₂.

Figure S13. SEM imagines of (a) CoSe₂, (b) CoSe₂-FeSe₂@GA, (c) CoSe₂-ZnSe@GA and (d) CoSe₂-NiSe₂@GA after cycling.

Figure S14. SEM imagines before cycling of (a) CoSe₂-FeSe₂@GA, (b) CoSe₂-ZnSe@GA and (c) CoSe₂-NiSe₂@GA, SEM imagines after cycling of (d) CoSe₂-FeSe₂@GA, (e) CoSe₂-ZnSe@GA and (f) CoSe₂-NiSe₂@GA.

Table S1. Details of comparison of specific surface area and pore characteristics of CoSe₂-FeSe₂@GA, CoSe₂-ZnSe@GA, and CoSe₂-NiSe₂@GA

Samples	S _{BET} (m ² g ⁻¹)	V _t (cm ³ g ⁻¹)	V _{mic} (cm ³ g ⁻¹)	Average pore diameter (nm)	V _{meso} (cm ³ g ⁻¹)
CoSe ₂ -FeSe ₂ @GA	12.941	0.14196	1.4196	48.27	1.2546
CoSe ₂ -ZnSe@GA	26.020	0.1235	5.9782	18.98	0.1192
CoSe ₂ -NiSe ₂ @GA	10.461	0.068927	2.4034	26.357	0.062994

 S_{BET} : Specific surface area by BET method, V_t : Total pore volume, V_{mic} : Micropore volume, V_{meso} : Mesopore volume.

Materials	Current density (A g ⁻¹)	Initial Discharge/charge Capacity (mAh g ⁻¹)	ICE (%)	Reversible Capacity/Cycle number/Current density (mAh g ⁻¹ /cycle/A g ⁻¹)	Refs.
CoSe ₂ -FeSe ₂ @GA	0.2	723.0/677.4	97.95	722.8/1000/1.0	
CoSe ₂ -ZnSe@GA	0.2	637.4/532.2	83.5	649.6/1000/1.0	This work
CoSe ₂ -NiSe ₂ @GA	0.2	770.9/603.4	78.3	644.5/1000/1.0	
ZnSe/CoSe ₂ @NPC NTs(II)-700	0.05	454.8	109.1	318.4/4000/2.0	1
Ni ₃ Se ₄ @CoSe ₂ @C/CN Ts	0.1	595/324	54.5	243/600/1.0	2
ZnSe@CoSe ₂ /NC	0.1	1071.1/820.9	76.6	293.3/1000/1.0	3
CoSe/MoSe ₂ -C	0.2	532.0/394.4	74.14	320.9/10000/2.0	4
(ZnSe@CoSe@CN)	0.1	660/559	84.6	429.6/200/1.0 397.1/400/2.0	5
CoSe ₂ /ZnSe	0.1	575/416	72.3	386.9/100/0.1	6
(CoNi)Se ₂ /NC	0.1	602/492.5	81.8	450.5/500/1.0	7
FeSe ₂ @CoSe ₂ /FeSe ₂	0.1	_	93	542/100/0.2 529/1800/2	8
(Co,Fe) Se-NGC@PDA-20	0.1	618/376	59	306/200/1.0	9
MoSe ₂ -Cu _{1.82} Se@GA	0.2	672.4/503.9	75.6	444.8/1000/1.0	10
CoSe ₂ -SnSe@CNF	0.1	798.4/437.8	54.8	248.7/1000/1.0	11

Table S2. Comparison of the electrochemical performance of existing bimetallic selenides reported in recent literatures.

Table S3. Comparison of typical EIS parameters of $CoSe_2$ -FeSe2@GA, $CoSe_2$ -ZnSe@GA and $CoSe_2$ -NiSe2 before and after cycling.

Samples	$ m R_s(\Omega)$ (before cycling)	R _{ct} (Ω) (before cycling)	R _s (Ω) (after cycling)	R _{ct} (Ω) (after cycling)
CoSe ₂ -FeSe ₂ @GA	3.225	6.1	3.241	1.078
CoSe ₂ -ZnSe@GA	2.558	9.3	10.71	3.226
CoSe ₂ -NiSe ₂ @GA	3.545	4.0	3.256	12.43

Table S4. The calculated b-values of the four materials corresponding to the different peaks

	Peak 1	Peak 2	Peak 3	Peak 4	peak 5
CoSe ₂ -FeSe ₂ @GA	0.94	0.93	0.91		
CoSe ₂ -ZnSe@GA	0.96	0.91	0.96	0.94	
CoSe ₂ -NiSe ₂ @GA	1.00	0.98	0.99	0.99	0.98
CoSe ₂	0.95	0.86	0.90		

Table S5. The calculated diffusion coefficients of CoSe₂-FeSe₂@GA, CoSe₂-ZnSe@GA and CoSe₂-NiSe₂.

Samples	D _{DisCharge} (cm ² /s×10 ⁻⁹)	D _{Charge} (cm²/s×10-9)
CoSe ₂ -FeSe ₂ @GA	20.683	15.550
CoSe ₂ -ZnSe@GA	7.416	6.752
CoSe ₂ -NiSe ₂ @GA	6.095	4.569

Calculation of the relative contents of CoSe₂, FeSe₂ and carbon in CoSe₂-FeSe₂@GA

As shown in **Figure 2d**, $CoSe_2$ -FeSe₂@GA has a weight loss of 70.9wt%. The weight loss of the composite is mainly composed of three parts: the change of weight loss from $CoSe_2$ to Co_3O_4 , the change of weight loss from FeSe₂ to Fe₂O₃ and the loss of carbon oxidation. W represents the weight percentage of FeSe₂. Since the ratio of cobalt to iron in the raw material is controlled at 1:1 and the molecular weight of FeSe₂ is similar with CoSe₂, the weight percentage of CoSe₂ is also W and the weight percentage of carbon is (100%-2W). Thus, according to the reaction equation (1)(2), the weight loss from pure CoSe₂ to Co₃O₄ is 63.0wt% and from pure FeSe₂ to Fe₂O₃ is 62.6wt%.

 $3\text{CoSe}_{2} + 8\text{O}_{2} \rightarrow \text{Co}_{3}\text{O}_{4} + 6\text{SeO}_{2}\uparrow$ (1) $4\text{FeSe}_{2} + 11\text{O}_{2} \rightarrow 2\text{Fe}_{2}\text{O}_{3} + 8\text{SeO}_{2}\uparrow$ (2) $W \times 63.0\% + W \times 62.6\% + 100\% - 2W = 70.9\%$

Therefore, according to formula (3), it can be calculated that the content of CoSe₂, FeSe₂, and carbon in CoSe₂-FeSe₂@GA is 39.1wt%, 39.1wt%, and 21.8wt%.

(3)

Calculation of the relative contents of CoSe2, ZnSe and Carbon in CoSe2-ZnSe@GA

As shown in Figure 2d, $CoSe_2$ -ZnSe@GA has a weight loss of 66.6wt%. The weight loss of the composite is mainly composed of three parts: the weight loss of $CoSe_2$ to Co_3O_4 , the weight loss of ZnSe to ZnO and the weight loss of carbon oxidation. W represents the weight percentage of $CoSe_2$. Since the ratio of cobalt to zinc in the raw material is controlled at 1:1, the weight percentage of ZnSe is W and the weight percentage of carbon is (100%-2W). Thus, according to reaction equation (4), the weight loss from pure ZnSe to ZnO is 43.6wt%.

 $2ZnSe + 3O_2 \rightarrow 2ZnO + 2SeO_2 \uparrow$ (4)

 $W \times 63.0\% + W \times 43.6\% + 100\% - 2W = 66.6\%$ (5)

Therefore, according to formula (5), it can be calculated that the content of CoSe₂, ZnSe and carbon in CoSe₂-ZnSe@GA is 35.8wt%, 35.8wt% and 28.4wt%

Calculation of the relative contents of CoSe2, NiSe2 and carbon in CoSe2-NiSe2@GA

As shown in Figure 2d, $CoSe_2$ -NiSe₂@GA The weight loss is 70.1wt%. The weight loss of composite materials mainly consists of three parts: weight loss from $CoSe_2$ to Co_3O_4 , weight loss from NiSe₂ to Ni₂O₃, and weight loss from carbon oxidation. W represents the weight percentage of $CoSe_2$, and since the cobalt nickel ratio in the raw material is controlled at 1:1.5, the weight percentage of carbon is (100% -2.5 W). Therefore, according to reaction equation (6), the weight loss from pure NiSe₂ to Ni₂O₃ is 40.0wt%.

 $4\text{NiSe} + 7\text{O}_2 \rightarrow 2\text{Ni}_2\text{O}_3 + 4\text{SeO}_2\uparrow \tag{6}$

 $W \times 63.0\% + 1.5W \times 40.0\% + 100\% - 2.5W = 70.1\%$ (7)

Therefore, according to formula (7), it can be calculated that the content of $CoSe_2$ and $NiSe_2$ in $CoSe_2$ -NiSe₂@GA is 23.5wt%, 35.3wt% and the content of carbon is 41.2wt%.

References:

[1] Z. N. Cao, J. W. Cui, D. B. Yu, Y. Wang, J. Q. Liu, J. C. Zhang, J. Yan, Y. Zhang, S. H. Sun, Y. C. Wu, Synergistic engineering of architecture and composition in bimetallic selenide@carbon hybrid nanotubes for enhanced lithium- and sodium-ion batteries, *Adv. Funct. Mater.*, 2023, **33**, 2306862.

[2] H. Y. Zhu, Z. Y. Li, F. Xu, Z. X. Qin, R. Sun, C. H. Wang, S. J. Lu, Y. F. Zhang, H. S. Fan, Ni₃Se₄@CoSe₂ hetero-nanocrystals encapsulated into CNT-porous carboninterpenetrating frameworks for high-performance sodium-ion battery, *J. Colloid Interface Sci.*, 2022, 611, 718-725.
[3] Z. Zhang, Y. Huang, X. D. Liu, X. Wang, P. B. Liu, Core–shell Co, Zn bimetallic selenide

embedded nitrogen-doped carbon polyhedral frameworks assist in sodium-ion battery ultralong cycle, *ACS Sustainable Chem. Eng.*, 2020, **8**, 8381–8390.

[4] J. H. Li, Y. Y. He, Y. X. Dai, H. Z. Zhang, Y. X. Zhang, S. N. Gu, X. Wang, T. T. Gao, G. W. Zhou, L. Q. Xu, Heterostructure interface construction of cobalt/molybdenum selenides toward ultrastable sodium-ion half/full batteries, *Adv. Funct. Mater.*, 2024, 2406915.

[5] Q. Zhang, M. L. Chen, J. Wang, C. F. Zhao, F. H. Cao, H. Li, H. P. Cong, C. L. Zhang, Ultrafine ZnSe/CoSe nanodots encapsulated in core–shell MOF-derived hierarchically porous N-doped carbon nanotubes for superior lithium/sodium storage, *J. Mater. Chem. A*, 2023, **11**, 5056.

[6] H. Shan, J. Qin, Y. C. Ding, H. M. K. Sari, X. X. Song, W. Liu, Y. C. Hao, J. J. Wang, C. Xie, J. J. Zhang, X. F. Li, Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe₂/FeSe₂, *Adv. Mater.*, 2021, **33**, 2102471.

[7] B. W. Cong, X. R. Li, Y. H. Suo, G. Chen, Metal-organic framework derived bimetallic selenide embedded in nitrogen-doped carbon hierarchical nanosphere for highly reversible sodium-ion storage, *J. Colloid Interface Sci.*, 2023, **635**, 370 -378.

[8] L. Y. Zhang, B. C. Zhu, D. F. Xu, Z. B. Qian, P. Xie, T. Liu, J. G. Yu, Yolk-shell FeSe₂@CoSe₂/FeSe₂ heterojunction as anode materials for sodium-ion batteries with high rate capability and stability, *J. Mater. Sci. Technol.*, 2024, **172**, 185-195.

[9] N. Kitchamsetti, J. S. Cho, C. S. Chakra, Prussian blue analogue derived porous hollow nanocages comprising polydopamine-derived N-doped C coated CoSe₂/FeSe₂ nanoparticles composited with N-doped graphitic C as an anode for high-rate Na-ion batteries, *Chem. Eng. J.*, 2024, **495**, 153353.

[10] H. Tian, Z. Z. Xu, K. Liu, D. Wang, L. L. Ren, Y. M. Wei, L. Z. Chen, Y. Y. Chen, S. H. Liu,
H. X. Yang, Heterogeneous bimetallic selenides encapsulated within graphene aerogel as advanced anodes for sodium-ion batteries, *J. Colloid Interface Sci.*, 2024, 670, 152-162.

[11] L. Gao, Y. N. Ma, C. K. Zhang, M. L. Cao, Constructing heterostructured CoSe₂-SnSe nanoparticles incorporated carbon nanofibers for robust sodium storage, *Chem. Eng. Sci.*, 2024, **283**, 119390.