Supporting Information

(C₁₃N₃H₁₄)₂MBr₄ (M=Zn, Cd): Two Novel Hybrid Metal Halides with Balanced Integrated Nonlinear Optical Performance

Jiajing Wu*, Yi-Fan Fu, Wenlong Liu, and Sheng-Ping Guo*

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.

E-mail: jiajingw@yzu.edu.cn, spguo@yzu.edu.cn.

Contents

 Table S1. Crystal data and structural refinement for 1 and 2.

Table S2. Fractional atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å²

 \times 10³) for 1 and 2. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S3. Bond lengths for 1 and 2.

Table S4. Bond angles for 1 and 2.

Table S5. Hydrogen bond lengths (Å) for 1 and 2.

Table S6. The x/y/z-projections of local dipole moments (DM) of $[ZnBr_4]^{2-}$ and $[CdBr_4]^{2-}$ in one-unit cell of **1** and **2**.

Table S7. The bond distortion degree (Δd) and bond angle distortion (σ^2) of the ZnBr₄ (1) and CdBr₄ (2) tetrahedra.

 Table S8. Linear and nonlinear optical properties of organic-inorganic hybrid ionic metal halides

 containing d¹⁰ transition metal cations

Table S9. Point charge model analysis of **1** and **2**. According to the crystal structure data collected at 296 K, we select a unit cell and assume that the centers of the positive charges of the organic cations and the negative charges of the $(ZnBr_4)^{2-}$ and $(CdBr_4)^{2-}$ are located on the C and Cd/Zn atoms, respectively.

Table S10. Bond valence sum of Cd^{2+} and Zn^{2+} ions in 1 and 2.

Table S11. Measured LIDTs of 1, 2 and AGS for their powder samples.

Table S12. The calculated frequency-dependent NLO coefficients of 1 and 2.

Figure S1. (a) The structure of 2 along the *c*-axis; (b) The inorganic and organic parts rotating along the c axis with 2₁ helical symmetry; (c) The organic layers in the *ac* plane; (d) The inorganic layers in the *bc* plane and their dipole moments. Hydrogen atoms are omitted for clarity.

Figure S2. Hydrogen bonds in 1 (a) and 2 (b).

Figure S3. Dipole moments of $[MBr_4]^{2-}$ and $C_{13}N_3H_{14}^+$ in one-unit cell. (a) 1; (b) 2. Blue: $[MBr_4]^{2-}$; orange and purple: $C_{13}N_3H_{14}^+$. The red arrows in the middle present the total dipole moments of the inorganic parts and organic parts, respectively.

Figure S4. Simulated and experimental powder X-ray diffraction patterns of 1 and 2.

Figure S5. The TGA curves of 1 (a) and 2 (b).

Figure S6. Crystal photographs of 1 (a) and 2 (b).

Figure S7 Distribution of C and Zn/Cd atoms in unit cells of 1 (a) and 2 (b).

Figure S8. Calculated frequency-dependent NLO coefficients of 1 (a) and 2 (b).

Empirical formula	$(C_{13}N_{3}H_{14})_{2}ZnBr_{4}(1)$	(C ₁₃ N ₃ H ₁₄) ₂ CdBr ₄ (2)
Formula weight/g mol ⁻¹	809.55	856.58
Temperature/K	296	296
Crystal system	orthorhombic	orthorhombic
Space group	$Pna2_1$	$Pna2_1$
a/Å	12.9297(7)	13.0023(5)
b/Å	14.7057(7)	14.6412(5)
c/Å	15.9445(7)	16.1558(6)
<i>α</i> /°	90	90
<i>β</i> /°	90	90
y/°	90	90
Volume/Å ³	3031.7(3)	3075.6(2)
Ζ	4	4
$ ho_{calC(g/cm^3)}$	1.774	1.85
μ/mm^{-1}	6.108	5.932
F(000)	1584.0	1656.0
2θ range (deg)	4.912 - 55.122	4.19 - 55.162
Inday pangas	$-16 \le h \le 16, -15 \le k \le 19,$	$-16 \le h \le 16, -19 \le k \le 18,$
muex ranges	$-20 \le l \le 20$	$-21 \le l \le 20$
Reflections collected	45996	46484
Independent reflections	6959 [$R_{int} = 0.0579, R_{sigma} = 0.0495$]	7086 [R_{int} = 0.0826, R_{sigma} = 0.0791]

Table S1.	Crystal data	a and structura	l refinement	for 1 and 2 .

GOF on F ²	1.021	1.004	
Final R indexes	$R_1 = 0.0352$, $wR_2 = 0.0564$	$R_1 = 0.0420$, $wR_2 = 0.0430$	
$[\mathbf{I} \ge 2\sigma (\mathbf{I})]$			
Final R indexes	$R_1 = 0.0620 \text{ w}R_2 = 0.0625$	$\mathbf{R}_{1} = 0.0920 \ \mathbf{w}\mathbf{R}_{2} = 0.0498$	
[all data]	KI = 0.0020, $WK2 = 0.0025$	R1 = 0.0920, $WR2 = 0.0490$	
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ /e Å ⁻³	0.34/-0.56	0.40/-0.50	
Flack parameter	0.011 (5)	0.000(5)	

Table S1. Crystal data and structural refinement for 1 and 2.

 $R1 = \Sigma ||Fo| - |Fc|| \ / \ \Sigma |Fo|, \ wR2 = \ \{ \Sigma [w(|Fo|^2 - |Fc|^2)^2] \ / \ \Sigma [w(|Fo|^4 \)]^{1/2} \ \text{and} \ w = 1/[\sigma^2(Fo^2) + (0.0462P)^2] \ , \ N=0 \ .$

where $P = (Fo^2 + 2Fc^2)/3$.

Atom	x	у	z	$U_{ m eq}$
		(1)		
Br(1)	3690.4(4)	7058.1(3)	6658.0(4)	38.06(13)
Br(2)	2880.8(5)	5854.3(4)	4638.8(3)	40.41(15)
Br(3)	1032.8(4)	5894.5(4)	6632.3(5)	51.19(17)
Zn(1)	2774.1(5)	5689.7(4)	6147.5(4)	36.10(16)
Br(4)	3537.6(5)	4317.4(4)	6616.7(5)	54.31(17)
N(2)	6885(4)	6542(3)	5762(3)	46.0(12)
N(5)	4146(4)	2706(3)	2947(3)	48.7(13)
N(4)	3937(3)	3822(3)	3944(3)	43.2(12)
N(6)	2519(3)	3093(3)	3363(3)	40.2(12)
N(3)	5492(4)	5999(3)	5013(3)	46.4(13)
C(7)	3537(4)	3210(4)	3423(3)	34.4(13)
C(20)	6123(4)	6661(4)	5208(3)	38.3(14)
N(1)	6016(5)	7457(4)	4845(4)	68.7(17)
C(5)	5374(3)	3623(3)	4895(2)	44.6(14)
C(4)	6420(3)	3704(3)	5084(2)	59.3(18)
C(3)	7096(2)	4076(3)	4500(3)	63(2)
C(2)	6727(3)	4366(3)	3726(3)	63(2)

Table S2. Fractional atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **1** and **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	x	y z		U _{eq}
C(1)	5682(3)	4285(3)	3536.8(19)	48.3(16)
C(6)	5005(2)	3914(3)	4121(2)	35.5(13)
C(18)	6278(2)	5353(3)	6713(3)	48.4(14)
C(17)	6488(3)	4606(3)	7220(3)	56.7(17)
C(16)	7490(4)	4270(3)	7274(3)	60.6(19)
C(15)	8283(2)	4680(3)	6822(3)	57.5(17)
C(14)	8072(2)	(2) 5427(3) 6316(2)		48.0(16)
C(19)	7070(3)	5763(2)	6261(2)	40.6(14)
C(10)	188(3)	4263(3)	4838(3)	77(2)
C(11)	1035(3)	035(3) 3863(3) 5228.6(1		61.9(19)
C(12)	1819(3)	3479(2)	3479(2) 4749(2)	
C(13)	1757(3)	3495(2)	3879(2)	36.6(13)
C(8)	910(3)	3895(3)	3488.3(18)	52.4(16)
C(9)	126(3)	4279(3)	3968(3)	79(2)
C(22)	4438(4)	8189(3)	4390(3)	79(2)
C(21)	5308(3)	7673(3)	4199(3)	50.3(16)
C(26)	5490(3)	7404(3)	3376(3)	73(2)
C(25)	4803(5)	7650(4)	2746(2)	91(3)

Table S2. Fractional atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **1** and **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	z	U _{eq}
C(24)	3934(4)	8166(4)	2937(4)	85(3)
C(23)	3751(3)	8436(3)	3760(4)	101(3)
		(2)		
Cd(1)	2757.6(3)	4416.0(3)	6088.7(3)	39.87(13)
Br(2)	2919.6(5)	4135.9(4)	4509.5(4)	41.35(18)
Br(1)	3674.4(5)	2916.3(4)	6644.3(5)	40.15(16)
Br(3)	921.3(5)	4161.6(5)	6632.0(5)	54.5(2)
Br(4)	3574.3(6)	5894.8(5)	6580.1(6)	59.7(2)
N(3)	3972(4)	6150(3)	3848(3)	40.9(15)
N(1)	4178(4)	7306(4)	2903(4)	51.4(17)
N(2)	2563(4)	6906(4)	3310(3)	39.8(15)
N(6)	6861(4)	3474(4)	5755(3)	48.7(16)
C(7)	3573(5)	6780(4)	3355(4)	34.7(17)
N(5)	5495(4)	3987(3)	4989(3)	47.3(16)
C(8)	5046(5)	6050(4)	4026(4)	39.3(18)
C(6)	1859(5)	6547(4)	4677(4)	41.4(18)
C(9)	5694(5)	5650(5)	3464(4)	53(2)
C(5)	1099(6)	6160(5)	5145(5)	58(2)

Table S2. Fractional atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **1** and **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	x y z		$U_{ m eq}$	
C(20)	6108(5)	3334(5)	5207(4)	38.2(17)
C(13)	5414(6)	6357(5)	4770(4)	46.2(19)
C(10)	6722(6)	5554(6)	3643(5)	67(3)
C(21)	7036(5)	4278(4)	6231(4)	39.4(18)
C(14)	5296(7)	2285(4)	4221(5)	50(2)
C(25)	6480(7)	5461(5)	7128(5)	58(2)
C(1)	1808(5)	6496(4)	3827(4)	33.9(17)
C(12)	6448(7)	6251(5)	4940(5)	57(2)
C(11)	7104(6)	5862(6)	4377(6)	62(2)
C(17)	3955(8)	1781(6)	3009(7)	76(3)
C(22)	8029(5)	4619(5)	6269(4)	50(2)
C(18)	4823(8)	2256(6)	2818(5)	88(3)
C(26)	6266(5)	4703(5)	6670(5)	47.2(17)
C(23)	8225(6)	5368(5)	6745(5)	60(2)
N(4)	5998(5)	2526(4)	4855(4)	75(2)
C(2)	988(6)	6076(5)	3456(5)	54(2)
C(19)	5493(6)	2501(5)	3419(6)	69(2)
C(24)	7439(7)	5805(5)	7173(5)	61(2)

Table S2. Fractional atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **1** and **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	x	У	Z	$U_{ m eq}$
C(4)	277(6)	5729(6)	4770(6)	77(3)
C(3)	220(6)	5690(6)	3920(6)	82(3)
C(15)	4422(8)	1826(5)	4426(6)	72(2)
C(16)	3748(8)	1570(6)	3814(8)	86(3)

Table S2. Fractional atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for **1** and **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom	Atom	Length/Å	Atom	Atom	Length/Å		
(1)							
Br(1)	Zn(1)	2.4729(8)	C(1)	C(6)	1.39		
Br(2)	Zn(1)	2.4217(9)	C(18)	C(17)	1.39		
Br(3)	Zn(1)	2.3995(8)	C(18)	C(19)	1.39		
Zn(1)	Br(4)	2.3680(8)	C(17)	C(16)	1.39		
N(2)	C(20)	1.334(7)	C(16)	C(15)	1.39		
N(2)	C(19)	1.416(5)	C(15)	C(14)	1.39		
N(5)	C(7)	1.320(7)	C(14)	C(19)	1.39		
N(4)	C(7)	1.330(7)	C(10)	C(11)	1.39		
N(4)	C(6)	1.417(5)	C(10)	C(9)	1.39		
N(6)	C(7)	1.331(6)	C(11)	C(12)	1.39		
N(6)	C(13)	1.414(5)	C(12)	C(13)	1.39		
N(3)	C(20)	1.307(7)	C(13)	C(8)	1.39		
C(20)	N(1)	1.314(7)	C(8)	C(9)	1.39		
N(1)	C(21)	1.414(6)	C(22)	C(21)	1.39		
C(5)	C(4)	1.39	C(22)	C(23)	1.39		
C(5)	C(6)	1.39	C(21)	C(26)	1.39		
C(4)	C(3)	1.39	C(26)	C(25)	1.39		
C(3)	C(2)	1.39	C(25)	C(24)	1.39		

Table S3. Bond lengths for 1 and 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C(2)	C(1)	1.39	C(24)	C(23)	1.39
		(2)		
Cd(1)	Br(2)	2.5926(9)	C(13)	C(12)	1.381(9)
Cd(1)	Br(1)	2.6549(8)	C(10)	C(11)	1.362(11)
Cd(1)	Br(3)	2.5710(8)	C(21)	C(22)	1.385(8)
Cd(1)	Br(4)	2.5388(8)	C(21)	C(26)	1.375(8)
N(3)	C(7)	1.325(8)	C(14)	N(4)	1.417(9)
N(3)	C(8)	1.433(8)	C(14)	C(19)	1.358(10)
N(1)	C(7)	1.321(7)	C(14)	C(15)	1.361(11)
N(2)	C(7)	1.329(7)	C(25)	C(26)	1.363(9)
N(2)	C(1)	1.421(7)	C(25)	C(24)	1.346(11)
N(6)	C(20)	1.335(8)	C(1)	C(2)	1.369(9)
N(6)	C(21)	1.425(8)	C(12)	C(11)	1.371(10)
N(5)	C(20)	1.294(7)	C(17)	C(18)	1.361(11)
C(8)	C(9)	1.370(9)	C(17)	C(16)	1.364(12)
C(8)	C(13)	1.369(9)	C(22)	C(23)	1.364(9)
C(6)	C(5)	1.367(9)	C(18)	C(19)	1.354(11)
C(6)	C(1)	1.377(9)	C(23)	C(24)	1.389(10)
C(9)	C(10)	1.374(10)	C(2)	C(3)	1.370(10)

Table S3. Bond lengths for 1 and 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C(5)	C(4)	1.381(10)	C(4)	C(3)	1.376(12)
C(20)	N(4)	1.320(8)	C(15)	C(16)	1.374(12)

Table S3. Bond lengths for 1 and 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°	
(1)								
Br(2)	Zn(1)	Br(1)	102.61(3)	C(17)	C(18)	C(19)	120	
Br(3)	Zn(1)	Br(1)	103.97(3)	C(16)	C(17)	C(18)	120	
Br(3)	Zn(1)	Br(2)	111.16(4)	C(15)	C(16)	C(17)	120	
Br(4)	Zn(1)	Br(1)	112.94(3)	C(16)	C(15)	C(14)	120	
Br(4)	Zn(1)	Br(2)	112.04(3)	C(15)	C(14)	C(19)	120	
Br(4)	Zn(1)	Br(3)	113.35(4)	C(18)	C(19)	N(2)	121.2(3)	
C(20)	N(2)	C(19)	127.1(4)	C(14)	C(19)	N(2)	118.7(3)	
C(7)	N(4)	C(6)	124.6(4)	C(14)	C(19)	C(18)	120	
C(7)	N(6)	C(13)	126.5(4)	C(11)	C(10)	C(9)	120	
N(5)	C(7)	N(4)	120.5(5)	C(12)	C(11)	C(10)	120	
N(5)	C(7)	N(6)	118.4(5)	C(11)	C(12)	C(13)	120	
N(4)	C(7)	N(6)	121.1(5)	C(12)	C(13)	N(6)	122.2(3)	
N(3)	C(20)	N(2)	121.4(5)	C(12)	C(13)	C(8)	120	
N(3)	C(20)	N(1)	119.5(5)	C(8)	C(13)	N(6)	117.8(3)	
N(1)	C(20)	N(2)	119.1(5)	C(9)	C(8)	C(13)	120	
C(20)	N(1)	C(21)	126.1(5)	C(8)	C(9)	C(10)	120	
C(4)	C(5)	C(6)	120	C(21)	C(22)	C(23)	120	
C(5)	C(4)	C(3)	120	C(22)	C(21)	N(1)	119.1(4)	

Table S4. Bond angles for 1 and 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(2)	C(3)	C(4)	120	C(26)	C(21)	N(1)	120.9(4)
C(3)	C(2)	C(1)	120	C(26)	C(21)	C(22)	120
C(2)	C(1)	C(6)	120	C(21)	C(26)	C(25)	120
C(5)	C(6)	N(4)	118.8(3)	C(24)	C(25)	C(26)	120
C(1)	C(6)	N(4)	121.2(3)	C(25)	C(24)	C(23)	120
C(1)	C(6)	C(5)	120	C(24)	C(23)	C(22)	120
			(2)			
Br(2)	Cd(1)	Br(1)	99.52(3)	C(26)	C(21)	N(6)	122.4(6)
Br(3)	Cd(1)	Br(2)	112.86(3)	C(26)	C(21)	C(22)	119.5(7)
Br(3)	Cd(1)	Br(1)	100.47(3)	C(19)	C(14)	N(4)	120.7(8)
Br(4)	Cd(1)	Br(2)	114.12(3)	C(19)	C(14)	C(15)	120.3(8)
Br(4)	Cd(1)	Br(1)	114.32(3)	C(15)	C(14)	N(4)	119.0(8)
Br(4)	Cd(1)	Br(3)	113.90(3)	C(24)	C(25)	C(26)	121.5(8)
C(7)	N(3)	C(8)	125.0(5)	C(6)	C(1)	N(2)	122.0(6)
C(7)	N(2)	C(1)	126.3(5)	C(2)	C(1)	N(2)	118.1(7)
C(20)	N(6)	C(21)	127.0(6)	C(2)	C(1)	C(6)	119.9(6)
N(3)	C(7)	N(2)	121.1(6)	C(11)	C(12)	C(13)	121.4(7)
N(1)	C(7)	N(3)	120.3(6)	C(10)	C(11)	C(12)	119.2(8)
N(1)	C(7)	N(2)	118.6(6)	C(18)	C(17)	C(16)	119.7(9)

Table S4. Bond angles for 1 and 2.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(9)	C(8)	N(3)	120.7(7)	C(23)	C(22)	C(21)	119.3(7)
C(13)	C(8)	N(3)	118.9(7)	C(19)	C(1)	C(17)	120.4(9)
C(13)	C(8)	C(9)	120.5(7)	C(25)	C(26)	C(21)	119.9(7)
C(5)	C(6)	C(1)	119.7(7)	C(22)	C(23)	C(24)	120.8(7)
C(8)	C(9)	C(10)	120.1(7)	C(20)	N(4)	C(14)	127.2(6)
C(6)	C(5)	C(4)	120.4(7)	C(1)	C(2)	C(3)	120.8(8)
N(5)	C(20)	N(6)	121.3(6)	C(18)	C(19)	C(14)	120.1(8)
N(5)	C(20)	N(4)	118.5(6)	C(25)	C(24)	C(23)	118.9(8)
N(4)	C(20)	N(6)	120.2(6)	C(3)	C(4)	C(5)	119.9(8)
C(8)	C(13)	C(12)	118.5(7)	C(2)	C(3)	C(4)	119.3(8)
C(11)	C(10)	C(9)	120.3(8)	C(14)	C(15)	C(16)	119.5(9)
C(22)	C(21)	N(6)	118.0(6)	C(17)	C(16)	C(15)	119.9(9)

Table S4. Bond angles for 1 and 2.

D-H	d(D–H)	d(HA)	d(DA)	∠(D–HA)(°)	А
			(1)		
N(1)-H(1)	0.86	2.72	3.477(6)	148	$Br(2)^{\#1}$
N(2)–H(2)	0.86	2.63	3.425(5)	153	$Br(1)^{\#1}$
N(3)-H(3A)	0.86	2.78	3.435(5)	135	Br(2)
N(4)–H(4)	0.86	2.68	3.468(4)	152	Br(2)
N(5)–H(5A)	0.86	2.87	3.489(5)	130	Br(1)#2
N(5)-H(5B)	0.86	2.61	3.398(5)	154	Br(3)#3
N(6)–H(6)	0.86	2.65	3.486(5)	163	Br(1)#3
			(2)		
N(1)-H(1A)	0.86	2.85	3.470(6)	131	Br(1)#4
N(1)-H(1B)	0.86	2.63	3.408(6)	152	Br(3)#5
N(2)–H(2)	0.86	2.64	3.467(5)	161	Br(1)#5
N(3)–H(3)	0.86	2.63	3.422(5)	154	Br(2)
N(4)-H(4A)	0.86	2.81	3.532(6)	142	Br(2) ^{#6}
N(5)–H(5A)	0.86	2.77	3.444(5)	136	Br(2)
N(6)–H(6A)	0.86	2.63	3.430(5)	155	Br(1)#6

Table S5. Hydrogen bond lengths (Å) for 1 and 2.

Symmetry transformations used to generate equivalent atoms: #1 1/2+*x*, 3/2-*y*, *z*; #2 1-*x*, 1-*y*, -1/2+*z*; #3 1/2-*x*, -1/2+*z*; #4 1-*x*, 1-*y*, -1/2+*z*; #5 1/2-*x*, 1/2+*y*, -1/2+*z*; #6 1/2+*x*, 1/2-*y*, *z*.

Ion	μ_x (D)	μ_{y} (D)	μ_{z} (D)
	(1)		
$[ZnBr_4]^{2-}$	-0.382523	-2.7583769	0.35409998
$[ZnBr_4]^{2-}$	0.38043	2.75777824	0.35409998
$[ZnBr_4]^{2-}$	0.38093562	-2.7548558	0.355347
$[ZnBr_4]^{2-}$	-0.3820174	2.75780178	0.355347
Total [ZnBr ₄] ^{2–}	-0.003174815	0.002347358	1.418893948
	(2)		
$[CdBr_4]^{2-}$	-0.451625215	3.260348857	0.006384011
$[CdBr_4]^{2-}$	0.451625215	-3.260348857	0.006384011
$[CdBr_4]^{2-}$	0.451625215	3.260348857	0.006384011
$[CdBr_4]^{2-}$	-0.451625215	-3.260348857	0.006384011
Total [CdBr ₄] ^{2–}	-1.73195E-14	1.59872E-14	0.025536044

Table S6. The x/y/z-projections of local dipole moments (DM) of $[ZnBr_4]^{2-}$ and $[CdBr_4]^{2-}$ in one-unit cell of **1** and **2**.

Compound	bond	distance/Å	<i>d</i> ₀ /Å	Δd			
	Zn(1)–Br(1)	2.4729					
1	Zn(1)–Br(2)	2.4217	2 4155	2.52×10^{-4}			
1	Zn(1)–Br(3)	2.3995	2.4155	2.52 × 10 +			
	Zn(1)–Br(4)	2.3680					
	Cd(1)–Br(1)	2.6549					
	Cd(1)–Br(2)	2.5926	2 5905	$2(8\times 10^{-4})$			
2	Cd(1)–Br(3)	2.5710	2.5895	2.68×10-4			
	Cd(1)–Br(4)	2.5388					
Compound	Angle	Angle/°	$\theta_0/^\circ$	σ^2			
	Br(2)–Zn(1)–Br(1)	102.61					
	Br(3)–Zn(1)–Br(1) 103.97						
1	Br(3)–Zn(1)–Br(2)	111.16	100.5	22.7824			
	Br(4)–Zn(1)–Br(1)	112.94	109.5				
	Br(4)–Zn(1)–Br(2)	112.04					
	Br(4)–Zn(1)–Br(3) 113.35						
	Br(2)–Cd(1)–Br(1)	99.52					
	Br(3)–Cd(1)–Br(1)	100.47		51.2735			
2	Br(3)–Cd(1)–Br(2)	112.86	109.5				
	Br(4)-Cd(1)-Br(1)	114.32					
	Br(4)–Cd(1)–Br(2)	114.12					
	Br(4)-Cd(1)-Br(3)	113.90					

Table S7. The bond distortion degree (Δd) and bond angle distortion (σ^2) of the ZnBr₄ (1) and CdBr₄ (2) tetrahedra.

Table S8. Linear and nonlinear optical properties of organic-inorganic hybrid ionic metal halides containing d¹⁰ transition metal cations

Compounds	Space	SHG	Band gap	Birefringence	DM	LIDT	Dof
Compounds	group	efficiency	(eV)	(@1064 nm)	r IVI	LIDI	Kei
[N(CH ₃) ₄] ₂ HgBr ₂ I ₂	$P2_{1}2_{1}2_{1}$	$0.46 \times \text{KDP}$	2.8	0.031		-	1
$[N(CH_3)_4]_2HgI_4$	$P2_{1}2_{1}2_{1}$	$0.5 \times \text{KDP}$	2.73	0.002	×	-	1
(TpyH ₃)[CdCl ₄][Cl]	$P2_{1}2_{1}2_{1}$	$0.72 \times \text{KDP}$	2.85,	-	×	-	2
$(C_{20}H_{20}P)CuBr_2$	$P2_{1}$	$1.1 \times \text{KDP}$	3.56	0.12		-	3
$(C_{20}H_{20}P)CuCl_2$	$P2_1$	$0.89 \times \text{KDP}$	3.64	0.13	\checkmark	-	3
$NH_4HgBr_3{\cdot}H_2O$	Cmm2	$28 \times \text{KDP}$	3.40	0.183	\checkmark	52.7 × AGS	4
[(CH ₂) ₃ NH ₂ S]CdBr ₃	$Cmc2_1$	$0.73 \times \text{KDP}$	-	-	-	-	5
$(C_6H_{14}N)_2CdCl_4$	$Cmc2_1$	0. 6× KDP	-	-	-	-	6
(C ₃ N ₆ H ₇)(C ₃ N ₆ H ₆)HgCl ₃	$P2_{1}$	$5 \times \text{KDP}$	4.4	0.246	\checkmark	-	7
$(H_6C_2N)_2CdI_4$	$P2_{1}2_{1}2_{1}$	$0.5 \times \text{KDP}$	3.86	0.047	×	-	8
α -(CN ₃ H ₆) ₃ Cu ₂ I ₅	Fdd2	$1.8 \times \text{KDP}$	2.80	-	×	-	9
(H ₇ C ₃ N ₆)(H ₆ C ₃ N ₆)ZnCl ₃	$P2_1$	$2.8 \times \text{KDP}$	5.25	0.255	\checkmark	-	10
(S-PCA) CuBr ₂	<i>C</i> 2	$0.3 \times \text{KDP}$	2.7	-	-	-	11
(S-PCA)CuBr ₂ · 0.5H ₂ O	<i>C</i> 2	$0.4 \times \text{KDP}$	2.87	-	-	-	11
(S-PCA) CuI ₂	<i>C</i> 2	$0.6 \times \text{KDP}$	3.66	-	-	-	11
N(CH ₃) ₄ ZnCl ₃	$Pmc2_1$	$15\times\text{SiO}_2$	3.4	-	×	-	12
$([Et_3P(CH_2)_2Cl][Cd(dca)_3]$	$P2_{1}2_{1}2_{1}$	$0.16 \times \text{KDP}$	-	-	-	-	13
[N(CH ₃) ₄] HgBrI ₂	$Pmc2_1$	$4.5 \times \text{KDP}$	2.83	0.025	×	-	14
[R-MPA] ₂ CdCl ₄	Сс	$0.53 \times \text{KDP}$	4.418	-	-	-	15
$[Et_3(n-Pr)P][Cd(dca)_3]$	$P2_{1}2_{1}2_{1}$	$0.12 \times \text{KDP}$	-	-	-	-	16
(l-Hpro) ₂ Cd ₅ Cl ₁₂ (1L)	<i>P1</i>	$0.25 \times \text{KDP}$	4.80	0.05	\checkmark	-	17
(l-Hpro)(l-pro)CdCl ₃ (2L)	$P2_1$	$0.7 \times \text{KDP}$	5.10	0.06	\checkmark	-	17
[Me ₃ NCH ₂ Cl]CdCl ₃	Сс	$0.73 \times \text{KDP}$	5.24	0.043		-	18
$(C_{13}N_{3}H_{14})_{2}ZnBr_{4}$	$Pna2_1$	$1.22 \times \text{KDP}$	3.96	0.15		$28 \times AGS$	This work
$(C_{13}N_{3}H_{14})_{2}CdBr_{4}$	$Pna2_1$	$1.14 \times \text{KDP}$	3.98	0.12		$25 \times AGS$	This work

Table S9. Point charge model analysis of **1** and **2**. According to the crystal structure data collected at 296 K, we select a unit cell and assume that the centers of the positive charges of the organic cations and the negative charges of the $(ZnBr_4)^{2-}$ and $(CdBr_4)^{2-}$ are located on the C and Cd/Zn atoms, respectively.

	(1)				
Atom	Atom coordinate	Coordinate of charge center			
Zn(1)	(0.77741, 0.93103, 0.61475)				
Zn(1)	(0.27741, 0.56897, 0.61475)	(0.5, 0.5, 0.26475)			
Zn(1)	(0.72259, 0.43103, 0.11475)	(0.5, 0.5, 0.50475)			
Zn(1')	(0.22259, 0.06897, 0.11475)				
C(7)	(0.8537, 0.179, 0.3423)				
C(7)	(0.3537, 0.321, 0.3423)				
C(7)	(0.6463, 0.679, 0.8423)				
C(7)	(0.1463, 0.821, 0.8423)	(0.5, 0.5, 0.43155)			
C(20)	(0.1123, 0.8339, 0.5208)				
C(20)	(0.8877, 0.1661, 0.0208)				
C(20)	(0.3877, 0.3339, 0.0208)				
C(20)	(0.6123, 0.6661, 0.5208)				
(0.4	$3155 - 0.36475) \times c \times Z \times e = 0.0668 \times 15.9$	0.00000000000000000000000000000000000			
	$= 6.8166 \times 10^{-29} \text{ C} \cdot \text{m} = 2$	20.4735 D			
	(2)	1			
Atom	Atom coordinate	Coordinate of charge center			
Cd(1)	(0.27576, 0.4416, 0.60887)				
Cd(1')	(0.77576, 0.0584, 0.60887)	(0.5, 0.5, 0.35887)			
Cd(1)	(0.72424, 0.5584, 0.10887)	(0.5, 0.5, 0.55007)			
Cd(1)	(0.22424, 0.9416, 0.10887)				
C(7)	(0.3573, 0.67798, 0.3355)				
C(7)	(0.6427, 0.32202, 0.8355)	(0.5, 0.5, 0.4281)			
C(7)	(0.8573, 0.82202, 0.3355)				

C(7)	(0.1427, 0.17798, 0.8355)				
C(20)	(0.61078, 0.33337, 0.5207)				
C(20)	(0.88922, 0.83337, 0.0207)				
C(20)	(0.11078, 0.16663, 0.5207)				
C(20)	(0.38922, 0.66663, 0.0207)				
$(0.4281 - 0.35887) \times c \times Z \times e = 0.06923 \times 16.1558 \times 10^{-10} \text{ m} \times 4 \times 1.6 \times 10^{-19} \text{ C}$ $= 7.158 \times 10^{-29} \text{ C} \cdot \text{m} = 21.459 \text{ D}$					
(1): $\mu_c = 20.4735/(3031.7 \times 3.7^2) = 4.93 \times 10^{-4} \text{ D/(Å}^3 \text{ eV}^2)$					
(2): $\mu_c = 21.459/(3075.6 \times 3.84^2) = 4.73 \times 10^{-4} \text{ D/(Å}^3 \text{ eV}^2)$					

Compound	Bond Bon	d distance (Å)	Bond valence	Sum
	Zn–Br(1)	2.4729	0.417707867	
1	Zn–Br(2)	2.4217	0.479440665	1.0/2114005
	Zn–Br(3)	2.3995	0.510189541	1.962114995
	Zn-Br(4)	2.3680	0.554776922	
	Cd–Br(1)	2.6549	0.438531197	
2	Cd–Br(2)	2.5926	0.51853033	2 1072 (7222
	Cd–Br(3)	2.5710	0.550296917	2.10/36/332
	Cd–Br(4)	2.5388	0.600008888	

Table S10. Bond valence sum of Cd^{2+} and Zn^{2+} ions in 1 and 2.

Compou	Damage energy	Strategies (aug2)	$\mathbf{L} \mathbf{D} \mathbf{T} \left(\mathbf{M} \mathbf{W} / \mathbf{m}^2 \right)$		LIDT (×
nd	(mJ)	Spot area (cm ²)	LIDI (MW/cm ²)	LIDT (* AGS)	KDP)
AGS	1.81	0.022698	7.97	1	
1	51.3	0.022698	226.01	28.36	0.87
2	45.2	0.022698	199.14	24.98	0.76

Table S11. Measured LIDTs of 1, 2 and AGS for their crystals.

 Table S12. The calculated frequency-dependent SHG coefficients of 1 and 2.

Compound	Nonvanishing independent SHG	Largest SHG coefficient at 1064 nm (pm/v)
	coefficients	
	d_{15}	0.34
1	d_{24}	0.26
	d_{33}	0.14
	d_{15}	0.32
2	d_{24}	0.24
	d_{33}	0.13

Figure S1. (a) The structure of **2** along the *c*-axis; (b) The inorganic and organic parts rotating along the *c* axis with 2_1 helical symmetry; (c) The organic layers in the *ac* plane; (d) The inorganic layers in the *bc* plane and their dipole moments. Hydrogen atoms are omitted for clarity.

Figure S2. The hydrogen bonds in 1 (a) and 2 (b).

Figure S3. Dipole moments of $[MBr_4]^{2-}$ and $C_{13}N_3H_{14}^+$ ions in one-unit cell. (a) **1**; (b) **2**; Blue: $[MBr_4]^{2-}$; Orange and purple: $C_{13}N_3H_{14}^+$. The red arrows in the middle present the total dipole moments of the inorganic parts and organic parts, respectively.

Figure S4. Simulated and experimental powder X-ray diffraction patterns of 1 and 2.

Figure S5. The TGA curves of 1 (a) and 2 (b).

Figure S6. Optical photographs of 1 (a) and 2 (b).

Figure S7. Distribution of C and Zn; C and Cd atoms in unit cells of 1 (a) and 2 (b).

Figure S8. Calculated frequency-dependent SHG coefficients of 1 (a) and 2 (b).

References

[1]. C. Yang, X. Liu, C. Teng, Q. Wu, F. Liang, Acentric Organic-Inorganic Hybrid Halide [N(CH₃)₄]₂HgBr₂I₂ Featuring an Isolated [HgBr₂I₂]^{2–} Tetrahedron and Second-Order Nonlinearity, *Inorg. Chem.*, 2021, **60**, 6829–6835.

[2]. S. Wang, Z. Liang, X. Song, X. Huang, L. Liu, X. Jiang, Z. Lin, H. Liu, Photoluminescence and Nonlinear Optical Properties of Two Terpyridine-Based Hybrid Zn/Cd Halides, *Inorg. Chem.*, 2023, **62**, 21451–21460.

[3] J. L. Qi, J. J. Wu, Y. Guo, Z. P. Xu, W. L. Liu and S. P. Guo, Quasi-Linear CuX₂ (X = Cl, Br) Motif-Built Hybrid Copper Halides Realizing Encouraging Nonlinear Optical Activities, *Inorg. Chem. Front.*, 2023, **10**, 3319– 3325.

[4]. Q. Wua, C. Yang, X. Liu, J. Ma, F. Liang, Y. S. Du, Dimensionality Reduction Made High-Performance Mid-Infrared Nonlinear Halide Crystal, *Mater. Today Phys.*, 2021, **21**, 100569.

[5]. L. He, Y. T. Liu, P. P. Shi, H. L. Cai, D. W Fu, Q. Ye, Energy Harvesting and Pd(II) Sorption Based on Organic-Inorganic Hybrid Perovskites, *ACS Appl. Mater. Interfaces.*, 2020, **12**, 53799–53806.

[6]. W. Q. Liao, H. Y. Ye, D. W. Fu, P. F. Li, L. Z. Chen, Y. Zhang, Temperature-Triggered Reversible Dielectric and Nonlinear Optical Switch Based on the One-Dimensional Organic–Inorganic Hybrid Phase Transition Compound [C₆H₁₁NH₃]₂CdCl₄, *Inorg. Chem.*, 2014, **53**, 11146–11151.

[7]. Z. Y. Bai, J. Y. Lee, H. Kim, C. L. Hu, K. M. Ok, Unveiling the Superior Optical Properties of Novel Melamine-Based Nonlinear Optical Material with Strong Second-Harmonic Generation and Giant Optical Anisotropy, *Small*, 2023, **19**, 2301756.

[8]. H. Y. Wu, C. L. Hu, M. B. Xu, Q. Q. Chen, N. Ma, X. Y. Huang, K. Z. Du, J. Chen, From $H_{12}C_4N_2CdI_4$ to $H_{11}C_4N_2CdI_3$: a Highly Polarizable CdNI₃ Tetrahedron Induced a Sharp Enhancement of Second Harmonic Generation Response and Birefringence, *Chem. Sci.*, 2023, **14**, 9533–9542.

[9]. J. J. Wu, Y. Guo, J. L. Qi, W. D. Yao, S. X. Yu, W. L. Liu and S. P. Guo, Multi-Stimuli Responsive Luminescence and Domino Phase Transitionof Hybrid Copper Halides with Nonlinear Optical Switching Behavior, *Angew. Chem. Int. Ed.*, 2023, **62**, e202301937

[10]. L. H. Liu, Z. Y. Bai, L. Hu, D. S. Wei, Z. B, Lin, L. Z. Zhang, A Melamine-Based Organic-Inorganic Hybrid Material Revealing Excellent Optical Performance and Moderate Thermal Stability, *J. Mater. Chem. C.*, 2021, 9, 7452–7457

[11]. X. Q. Ji, S. N. Geng, S. Zhang, Y. P. Gong, X. Y. Zhang, R. Q. Li, Y. Liu, J. Chen, R. Chen, Z. W Xiao, L.
 L. Mao, Chiral 2D Cu(I) Halide Frameworks, *Chem. Mater.*, 2022, 34, 8262–8270.

[12] M. H. Choi, S. H. Kim, H. Y. Chang, P. S. Halasyamani, K. M. Ok, New Noncentrosymmetric Material-[N(CH₃)₄]ZnCl₃: Polar Chains of Aligned ZnCl₄ Tetrahedra. *Inorg. Chem.*, 2009, **48**, 8376–8382.

[13]. M. M. Zhao, L, Zhou, P. P. Shi, X. Zheng, X. G. Chen, J. X. Gao, F. J. Geng, Q. Ye, and D. W. Fu, Halogen Substitution Effects on Optical and Electrical Properties in 3D Molecular Perovskites, *Chem. Commun.*, 2018, 54, 13275—13278.

 [14]. C. Yang, X. Liu, C. L Teng, Q. Wu, F. Liang, Syntheses, Structure and Properties of a New series of Organic– Inorganic Hg-Based Halides: Adjusting Halogens Resulted in Huge Performance Mutations, *Dalton Trans.*, 2021, 50, 7563–7570.

[15]. L. S. Li, Y. H. Tan, W. J. Wei, H. Q. Gao, Y. Z. Tang, X. B. Han, Chiral Switchable Low-Dimensional Perovskite Ferroelectrics, *ACS Appl. Mater. Interfaces.*, 2021, **13**, 2044–2051.

[16]. L. Zhou, X. Zheng, P. P. Shi, Z. Zafar, H. Y. Ye, D. W. Fu and Q. Ye, Switchable Nonlinear Optical and Tunable Luminescent Properties Triggered by Multiple Phase Transitions in a Perovskite-Like Compound, Inorg. Chem., 2017, 56, 3238–324416.

[17]. J. Cheng, Y. Deng, X. Dong, J. Li, L. Huang, H. Zeng, G. Zou andZ. Lin, Homochiral Hybrid Organic-Inorganic Cadmium Chlorides Directed by Enantiopure Amino Acids, *Inorg. Chem.*, 2022, **61**, 11032–11035.
[18]. C. Shen, J. Liu, K. Wu, L. Xu, D. Sun, Y. Dang, J. Wang and D. Wang, High stability and moderate second-order nonlinear optical properties of hybrid lead-free perovskite [(CH₃)₃NCH₂Cl]CdCl₃ bulk crystals, *CrystEngComm*, 2023, **25**, 2264–2270.

[19]. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.

[20]. Y. Guo, S. F. Yan, W. D. Yao, H. Y. Chen, W. I. Liu, J. J. Wu and S. P. Guo, Dual Monomeric Inorganic Units Constructed Bright Emissive ZeroDimensional Antimony Chlorides with Solvent-Induced Reversible Structural Transition, *Inorg. Chem.*, 2023, **62**, 13692-13697.

[21]. S. K. Kurtz, T. T. Perry, A powder technique for the evaluation of nonlinear optical materials, *J. Appl. Phys.*, 1968, **39**, 3798–3813.

[22]. M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, *J. Phys.: Condens. Matter.*, 2002, **14**, 2717–2744.

[23]. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, 77, 3865–38685.

[24]. S. F. Li, X. M. Jiang, B. W. Liu, D. Yan, C. S. Lin, H. Y. Zeng, G. C. Guo, Superpolyhedron-Built Second Harmonic Generation Materials Exhibit Large Mid-Infrared Conversion Efficiencies and High Laser-Induced Damage Thresholds, *Chem. Mater.*, 2017, 29, 1796–1804.

[25]. X. M. Jiang, G. E. Wang, Z. F. Liu, M. J. Zhang, G. C. Guo, Large Mid-IR Second-Order Nonlinear-Optical Effects Designed by the Supramolecular Assembly of Different Bond Types without IR Absorption, *Inorg. Chem.*, 2013, 52, 8865–8871.