Supporting Information

Chemical Modulation of A^IRE^{III}C^{IV}Q^{VI}₄ Family Compounds for Band Gap and Optical Anisotropy Enhancement

Hongshan Wang,^{a,b} Xueting Pan,^a, Shilie Pan^{a,b*} and Junjie Li,^{a,b,*}

^aResearch Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

*To whom correspondence should be addressed, E-mails: <u>slpan@ms.xjb.ac.cn</u> (Shilie Pan), <u>lijunjie@ms.xjb.ac.cn (Junjie Li)</u>

Empirical				N. X. 646
formula	AgYSiS ₄	AgLaSiS ₄	NaLaSiS ₄	NaLaSiSe ₄
Formula	353.11	403.11	318.23	505.83
weight (Da)	000111	100111	010.20	000100
Temperature	298	298	221.0	298
(K)			-	
Crystal system		Monoo	elinic	
Space group		$P2_1$	/c	
<i>a</i> (Å)	8.9439(19)	8.9451(8)	9.314(4)	9.8134(13)
b (Å)	10.452(2)	10.5565(9)	10.470(4)	10.9219(15)
<i>c</i> (Å)	6.5622(13)	6.9470(6)	6.868(3)	7.0956(8)
<i>V</i> (Å ³)	588.2(2)	632.47	652.9(5)	739.82(16)
Z		4		
D _{calc} (g/cm ⁻³)	3.988	4.233	3.237	4.541
Absorption				
coefficient	14.620	11.130	7.936	25.555
(mm ⁻¹)				
<i>F</i> (000)	656	728	584	872
Completeness	98 70	100.0	100.0	08 5
to θ (%)	98.70	100.0	100.0	76.5
heta range for				3.402 to
data	2.375 to 27.537	2.362 to 27.492	2.243 to 27.490	27 /01
collection/°				27.771
	$-11 \le h \le 11, -$	$-11 \le h \le 11, -$	$-12 \le h \le 11, -$	$-12 \le h \le 11$,
Index ranges	$13 \le k \le 13, -8$	$13 \le k \le 13, -8$	$13 \le k \le 13, -8$	$-14 \le k \le 14,$
	$\leq l \leq 8$	$\leq l \leq 9$	$\leq l \leq 8$	$-9 \le l \le 9$
Reflections	7287	11633	9394	5449
collected				
Independent	1338 [R(int) =	1450 [R(int) =	1491 [R(int) =	1668 [<i>R</i> (int)
reflections	0.0988]	0.0721]	0.0737]	= 0.0792]

Table S1. Crystal data and structure refinements of $A^{I}RE^{III}SiQ^{VI}_{4}$ ($A^{I} = Ag$, Na; $RE^{III} = La$, Y; $Q^{VI} = S$, Se).

Observed				
reflections	980	1220	1336	1400
[<i>I</i> >2 <i>σ</i> (<i>I</i>)]				
Data /				
restraints /	1338 / 0 / 65	1450 / 0 / 65	1491 / 0 / 65	1668 / 0 / 65
parameters				
Absorpt				
correction		multi-	scan	
type				
GooF on F^2	1.039	1.118	1.070	1.005
$R_1, WR_2 (I > 2\sigma)$	0.0490.0.1176	0.0210.0.0750	0.0272.0.0591	0.0404,
(<i>I</i>)) ^a	0.0480, 0.1170	0.0310, 0.0730	0.0272, 0.0381	0.0743
R_1, wR_2 (all	0 0712 0 1276	0.0272.0.0774	0.0207.0.0607	0.0485,
data) ^a	0.0713, 0.1270	0.0372, 0.0774	0.0307, 0.0607	0.0780
diff peak, hole (e/Å ³)	1.685, -0.971	1.456, 1.407	0.971, -0.746	1.212, 1.445

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ and $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$.

Atoms	Wyck.	x	У	Z	U _{eq}	BVS ^[a]
Ag(1)	4e	0.1122(1)	0.2458(1)	-0.0720(1)	43(1)	0.99
La(1)	4e	0.3484(1)	0.6039(1)	0.7181(1)	17(1)	2.97
Si(1)	4e	0.2573(2)	0.5499(2)	0.1903(3)	17(1)	4.08
S(1)	4e	0.4686(2)	0.6366(2)	0.3557(2)	18(1)	1.97
S(2)	4e	0.1261(2)	0.4880(2)	0.3796(2)	20(1)	1.95
S(3)	4e	0.1474(2)	0.6941(2)	-0.0111(2)	18(1)	1.99
S(4)	4e	0.3236(2)	0.4060(2)	0.0153(2)	19(1)	2.12
GII ^[b]						0.053

Table S2. Fractional atomic coordinates, equivalent isotropic displacement parameters ($Å^2 \times 10^3$), and bond valence sum (BVS) for AgLaSiS₄. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

[b] The global instability index (GII) calculated using

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$
(1)

where N is the number of atoms in the formula unit. The GII is calculated as 0.053, which is lower than 0.2, indicating the rationality of the structure from this side.

Atoms	Wyck.	x	У	z	U_{eq}	BVS ^[a]
Ag(1)	4e	0.1134(1)	0.7485(1)	-0.0667(2)	41(1)	0.94
Y(1)	4e	0.3532(1)	0.3875(1)	0.7233(1)	21(1)	2.74
Si(1)	4e	0.2644(3)	0.4484(2)	0.1985(4)	19(1)	4.14
S (1)	4e	0.4736(3)	0.3578(2)	0.3748(4)	21(1)	1.92
S(2)	4e	0.1522(3)	0.3035(2)	-0.0187(4)	21(1)	1.90
S(3)	4e	0.3308(3)	0.5886(2)	0.0066(4)	20(1)	2.06
S(4)	4e	0.1385(3)	0.5137(2)	0.4000(4)	23(1)	1.95
GII ^[b]						0.112

Table S3. Fractional atomic coordinates, equivalent isotropic displacement parameters ($Å^2 \times 10^3$), and bond valence sum (BVS) for AgYSiS₄. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

[b] The global instability index (GII) calculated using

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$
(1)

where N is the number of atoms in the formula unit. The GII is calculated as 0.112, which is lower than 0.2, indicating the rationality of the structure from this side.

Atoms	Wyck.	x	У	Z.	U _{eq}	BVS ^[a]
Na(1)	4e	0.4116(3)	0.207(3)	0.2602(4)	53(1)	0.92
La(1)	4e	0.8579(1)	0.3946(1)	1.2317(1)	13(1)	2.91
Si(1)	4e	0.7661(1)	0.4564(1)	0.7060(2)	13(1)	4.08
S(1)	4e	0.8276(1)	0.6008(1)	0.5241(2)	15(1)	1.97
S(2)	4e	0.6599(1)	0.3115(1)	0.5104(2)	16(1)	2.06
S(3)	4e	0.6459(1)	0.5245(1)	0.9068(2)	18(1)	1.85
S(4)	4e	0.9671(1)	0.3654(1)	0.8574(2)	13(1)	2.01
GII ^[b]						0.073

Table S4. Fractional atomic coordinates, equivalent isotropic displacement parameters ($Å^2 \times 10^3$), and bond valence sum (BVS) for NaLaSiS₄. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

[b] The global instability index (GII) calculated using

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$
(1)

where N is the number of atoms in the formula unit. The GII is calculated as 0.073, which is lower than 0.2, indicating the rationality of the structure from this side.

Atoms	Wyck.	x	У	Z	U _{eq}	BVS ^[a]
Na(1)	4e	0.5835(7)	0.2016(6)	0.7500(8)	75(2)	0.91
La(1)	4e	0.1406(1)	0.3943(1)	-0.2323(1)	15(1)	2.76
Si(1)	4e	0.2302(3)	0.4558(2)	0.2921(3)	14(1)	4.03
Se(1)	4e	0.3372(1)	0.3085(1)	0.4967(1)	17(1)	2.03
Se(2)	4e	0.1696(1)	0.6034(1)	0.4805(1)	17(1)	1.95
Se(3)	4e	0.3571(1)	0.5239(1)	0.0907(1)	20(1)	1.78
Se(4)	4e	0.0264(1)	0.3632(1)	0.1368(1)	14(1)	1.95
GII ^[b]						0.116

Table S5. Fractional atomic coordinates, equivalent isotropic displacement parameters ($Å^2 \times 10^3$), and bond valence sum (BVS) for NaLaSiSe₄. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

[b] The global instability index (GII) calculated using

$$G = \sqrt{\frac{\sum_{i=1}^{n} (BVS - v_i)}{N}}$$
(1)

where N is the number of atoms in the formula unit. The GII is calculated as 0.116, which is lower than 0.2, indicating the rationality of the structure from this side.

Table S6. Anisotropic displacement parameters (Å² × 10³) for AgLaSiS₄. TheAnisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ag(1)	39(1)	27(1)	65(1)	-11(1)	20(1)	-7(1)
La(1)	24(1)	15(1)	14(1)	0(1)	6(1)	2(1)
Si(1)	21(1)	14(1)	16(1)	-1(1)	6(1)	0(1)
S(1)	21(1)	14(1)	18(1)	0(1)	6(1)	-1(1)
S(2)	25(1)	19(1)	19(1)	-2(1)	10(1)	-5(1)
S(3)	22(1)	15(1)	16(1)	1(1)	3(1)	0(1)
S(4)	21(1)	16(1)	19(1)	-2(1)	6(1)	1(1)

Table S7. Anisotropic displacement parameters (Å $(Å^2 \times 10^3)$ for AgYSiS4. TheAnisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ag(1)	45(1)	25(1)	57(1)	7(1)	17(1)	6(1)
Y(1)	29(1)	16(1)	17(1)	0(1)	7(1)	0(1)
Si(1)	28(2)	12(1)	17(1)	-1(1)	7(1)	0(1)
S(1)	27(2)	16(1)	20(1)	0(1)	9(1)	2(1)
S(2)	28(2)	16(1)	19(1)	-1(1)	6(1)	-2(1)
S(3)	28(2)	14(1)	20(1)	1(1)	8(1)	-2(1)
S(4)	32(2)	19(1)	19(1)	2(1)	11(1)	3(1)

Table S8. Anisotropic displacement parameters (Å $(Å^2 \times 10^3)$) for NaLaSiS4. TheAnisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Na(1)	58(2)	57(2)	34(1)	6(1)	-13(1)	-30(1)
La(1)	19(1)	11(1)	10(1)	0(1)	3(1)	-1(1)
Si(1)	16(1)	12(1)	10(1)	1(1)	3(1)	0(1)
S(1)	20(1)	12(1)	13(1)	2(1)	3(1)	0(1)
S(2)	19(1)	14(1)	13(1)	-1(1)	1(1)	-2(1)
S(3)	20(1)	19(1)	15(1)	1(1)	6(1)	6(1)
S(4)	16(1)	10(1)	13(1)	1(1)	3(1)	0(1)

Table S9. Anisotropic displacement parameters (Å $^2 \times 10^3$) for NaLaSiSe4. TheAnisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atoms	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Na(1)	71(4)	89(5)	47(3)	-7(3)	-23(3)	49(4)
La(1)	17(1)	14(1)	13(1)	0(1)	4(1)	0(1)
Si(1)	14(1)	14(1)	14(1)	-2(1)	3(1)	0(1)
Se(1)	16(1)	19(1)	16(1)	2(1)	2(1)	2(1)
Se(2)	18(1)	16(1)	17(1)	-2(1)	3(1)	1(1)
Se(3)	20(1)	23(1)	18(1)	-1(1)	7(1)	-6(1)
Se(4)	14(1)	14(1)	15(1)	0(1)	3(1)	0(1)

Atoms	Distance (Å)	Atoms	Distance (Å)
Ag(1)-S(2)#1	2.4978(19)	La(1)-S(3)#4	2.9655(16)
Ag(1)-S(3)#2	2.6149(17)	La(1)-S(4)#3	3.0270(17)
Ag(1)-S(4)	2.4897(17)	La(1)-S(4)#5	2.9866(17)
La(1)-S(1)#3	3.1361(17)	Si(1)-S(1)	2.140(2)
La(1)-S(1)#4	3.0045(17)	Si(1)-S(2)	2.086(2)
La(1)-S(1)	3.0084(16)	Si(1)-S(3)	2.124(2)
La(1)-S(2)	2.9158(17)	Si(1)-S(4)	2.126(2)
La(1)-S(3)#5	3.0779(16)		

Table S10. Selected bond lengths (Å) of AgLaSiS₄.

#1 x, -y+1/2, z-1/2; #2 -x, -y+1, -z; #3 -x+1, -y+1, -z+1; #4 x, -y+3/2, z+1/2; #5 x, y, z+1.

Atoms	Angle (°)	Atoms	Angle (°)
S(2)#1-Ag(1)-S(3)#2	110.38(6)	S(3)#5-La(1)-S(1)#3	139.93(4)
S(4)-Ag(1)-S(2)#1	129.96(6)	S(3)#4-La(1)-S(1)	76.62(4)
S(4)-Ag(1)-S(3)#2	116.30(6)	S(3)#4-La(1)-S(3)#5	74.72(3)
S(1)#4-La(1)-S(1)	89.11(4)	S(3)#4-La(1)-S(4)#5	136.76(5)
S(1)#4-La(1)-S(1)#3	129.190(17)	S(3)#4-La(1)-S(4)#3	134.79(5)
S(1)-La(1)-S(1)#3	68.78(5)	S(4)#5-La(1)-S(1)	140.11(5)
S(1)-La(1)-S(3)#5	150.75(5)	S(4)#3-La(1)-S(1)#3	66.97(4)
S(1)#4-La(1)-S(3)#5	75.01(4)	S(4)#5-La(1)-S(1)#3	71.60(4)
S(1)#4-La(1)-S(4)#3	68.29(4)	S(4)#5-La(1)-S(1)#4	120.25(4)
S(1)-La(1)-S(4)#3	90.71(4)	S(4)#5-La(1)-S(3)#5	68.36(4)
S(2)-La(1)-S(1)#3	78.59(5)	S(4)#3-La(1)-S(3)#5	105.39(4)
S(2)-La(1)-S(1)	72.06(4)	S(4)#5-La(1)-S(4)#3	77.90(5)
S(2)-La(1)-S(1)#4	138.52(5)	S(2)-Si(1)-S(1)	111.11(10)
S(2)-La(1)-S(3)#4	71.47(5)	S(2)-Si(1)-S(3)	113.60(10)
S(2)-La(1)-S(3)#5	103.81(5)	S(2)-Si(1)-S(4)	115.21(11)
S(2)-La(1)-S(4)#5	95.97(5)	S(3)-Si(1)-S(1)	103.61(10)
S(2)-La(1)-S(4)#3	145.26(5)	S(3)-Si(1)-S(4)	106.62(10)
S(3)#4-La(1)-S(1)#3	139.70(4)	S(4)-Si(1)-S(1)	105.76(10)
S(3)#4-La(1)-S(1)#4	68.29(4)		

Table S11. Selected bond angles (°) of AgLaSiS₄.

#1 x, -y+1/2, z-1/2; #2 -x, -y+1, -z; #3 -x+1, -y+1, -z+1; #4 x, -y+3/2, z+1/2; #5 x, y, z+1.

Atoms	Distance (Å)	Atoms	Distance (Å)
Ag(1)-S(2)#3	2.647(3)	Y(1)-S(2)#5	2.850(3)
Ag(1)-S(3)	2.505(3)	Y(1)-S(3)#6	2.850(2)
Ag(1)-S(4)#1	2.511(3)	Y(1)-S(3)#4	2.889(3)
Y(1)-S(1)#4	3.235(3)	Si(1)-S(1)	2.123(4)
Y(1)-S(1)	2.808(2)	Si(1)-S(2)	2.126(4)
Y(1)-S(1)#5	2.849(3)	Si(1)-S(3)	2.124(3)
Y(1)-S(2)#6	2.932(3)	Si(1)-S(4)	2.081(3)

Table S12. Selected bond lengths (Å) of AgYSiS₄.

#1 x, -y+3/2, z-1/2; #2 x, -y+3/2, z+1/2; #3 -x, -y+1, -z; #4 -x+1, -y+1, -z+1; #5 x, y+1/2, z+1/2; #6 x, y, z+1.

Atoms	Angle (°)	Atoms	Angle (°)
S(3)-Ag(1)-S(2)#3	121.12(8)	S(2)#6-Y(1)-S(1)#4	140.19(7)
S(3)-Ag(1)-S(4)#1	126.39(9)	S(2)#5-Y(1)-S(2)#6	73.66(6)
S(4)#1-Ag(1)-S(2)#3	109.24(9)	S(2)#5-Y(1)-S(3)#6	136.90(8)
S(1)-Y(1)-S(1)#5	89.44(6)	S(2)#5-Y(1)-S(3)#4	139.01(8)
S(1)#5-Y(1)-S(1)#4	130.93(4)	S(3)#4-Y(1)-S(1)#4	67.09(7)
S(1)-Y(1)-S(1)#4	67.22(7)	S(3)#6-Y(1)-S(1)#4	69.49(6)
S(1)#5-Y(1)-S(2)#6	76.22(7)	S(3)#4-Y(1)-S(2)#6	108.97(7)
S(1)-Y(1)-S(2)#6	151.26(8)	S(3)#6-Y(1)-S(2)#6	71.10(7)
S(1)-Y(1)-S(2)#5	78.21(7)	S(3)#6-Y(1)-S(3)#4	76.94(8)
S(1)#5-Y(1)-S(2)#5	71.32(8)	S(1)-Si(1)-S(2)	102.86(14)
S(1)#5-Y(1)-S(3)#4	69.92(7)	S(1)-Si(1)-S(3)	106.23(16)
S(1)-Y(1)-S(3)#4	88.54(8)	S(3)-Si(1)-S(2)	104.62(14)
S(1)-Y(1)-S(3)#6	136.64(7)	S(4)-Si(1)-S(1)	110.60(14)
S(1)#5-Y(1)-S(3)#6	121.71(7)	S(4)-Si(1)-S(2)	114.97(17)
S(2)#5-Y(1)-S(1)#4	136.68(7)	S(4)-Si(1)-S(3)	116.34(14)

Table S13. Selected bond angles (°) of AgYSiS₄.

#1 x, -y+3/2, z-1/2; #2 x, -y+3/2, z+1/2; #3 -x, -y+1, -z; #4 -x+1, -y+1, -z+1; #5 x, y+1/2, z+1/2; #6 x, y, z+1.

Atoms	Distance (Å)	Atoms	Distance (Å)
Na(1)-S(1)#4	2.841(3)	La(1)-S(2)#6	3.0647(15)
Na(1)-S(2)#1	3.178(4)	La(1)-S(3)	2.9601(14)
Na(1)-S(2)	2.780(3)	La(1)-S(4)	2.9837(15)
Na(1)-S(3)#5	3.039(3)	La(1)-S(4)#2	2.9668(15)
Na(1)-S(3)#3	3.116(3)	La(1)-S(4)#7	3.1288(15)
Na(1)-S(3)#1	3.267(4)	Si(1)-S(1)	2.1194(17)
La(1)-S(1)#6	3.0041(14)	Si(1)-S(2)	2.1203(17)
La(1)-S(1)#7	3.0348(17)	Si(1)-S(3)	2.0861(18)
La(1)-S(2)#2	3.0199(14)	Si(1)-S(4)	2.1515(18)

Table S14. Selected bond lengths (Å) of NaLaSiS₄.

#1 x, -y+1/2, z-1/2; #2 x, -y+1/2, z+1/2; #3 -x+1, y-1/2, -z+3/2; #4 -x+1, y-1/2, -z+1/2; #5 -x+1, -y+1, -z+1; #6 x, y, z+1; #7 -x+2, -y+1, b-z+2.

Atoms	Angle (°)	Atoms	Angle (°)
S(1)#4-Na(1)-S(2)#1	99.12(9)	S(3)-La(1)-S(1)#6	91.59(4)
S(1)#4-Na(1)-S(3)#3	91.60(8)	S(3)-La(1)-S(1)#7	144.01(4)
S(1)#4-Na(1)-S(3)#1	106.81(10)	S(3)-La(1)-S(2)#6	102.01(4)
S(1)#4-Na(1)-S(3)#5	93.29(9)	S(3)-La(1)-S(2)#2	73.67(4)
S(2)-Na(1)-S(1)#4	174.68(13)	S(3)-La(1)-S(4)	72.30(4)
S(2)-Na(1)-S(2)#1	75.65(8)	S(3)-La(1)-S(4)#2	140.24(3)
S(2)-Na(1)-S(3)#5	85.50(8)	S(3)-La(1)-S(4)#7	76.88(4)
S(2)#1-Na(1)-S(3)#1	66.72(8)	S(4)-La(1)-S(1)#6	138.64(3)
S(2)-Na(1)-S(3)#1	72.22(8)	S(4)#2-La(1)-S(1)#7	68.11(3)
S(2)-Na(1)-S(3)#3	92.47(8)	S(4)#2-La(1)-S(1)#6	122.82(4)
S(3)#5-Na(1)-S(2)#1	86.59(8)	S(4)-La(1)-S(1)#7	90.31(4)
S(3)#3-Na(1)-S(2)#1	128.56(12)	S(4)-La(1)-S(2)#6	151.27(3)
S(3)#5-Na(1)-S(3)#1	148.45(10)	S(4)#2-La(1)-S(2)#2	67.79(4)
S(3)#3-Na(1)-S(3)#1	62.02(7)	S(4)-La(1)-S(2)#2	77.30(4)
S(3)#5-Na(1)-S(3)#3	143.12(13)	S(4)#2-La(1)-S(2)#6	76.86(4)
S(1)#6-La(1)-S(1)#7	80.91(4)	S(4)#2-La(1)-S(4)#7	129.35(3)
S(1)#7-La(1)-S(2)#6	107.47(4)	S(4)-La(1)-S(4)#7	67.76(4)
S(1)#6-La(1)-S(2)#2	135.43(4)	S(4)#2-La(1)-S(4)	89.76(3)
S(1)#6-La(1)-S(2)#6	68.14(4)	S(1)-Si(1)-S(2)	106.63(7)
S(1)#7-La(1)-S(4)#7	67.33(4)	S(1)-Si(1)-S(4)	106.30(8)
S(1)#6-La(1)-S(4)#7	71.59(4)	S(2)-Si(1)-S(4)	102.82(7)
S(2)#2-La(1)-S(1)#7	134.07(3)	S(3)-Si(1)-S(1)	113.67(8)
S(2)#2-La(1)-S(2)#6	74.13(3)	S(3)-Si(1)-S(2)	114.85(8)
S(2)#6-La(1)-S(4)#7	139.67(3)	S(3)-Si(1)-S(4)	111.67(7)
S(2)#2-La(1)-S(4)#7	139.63(4)		

Table S15. Selected bond angles (°) of NaLaSiS₄.

#1 x, -y+1/2, z-1/2; #2 x, -y+1/2, z+1/2; #3 -x+1, y-1/2, -z+3/2; #4 -x+1, y-1/2, -z+1/2; #5 -x+1, -y+1, -z+1; #6 x, y, z+1; #7 -x+2, -y+1, b-z+2.

Atoms	Distance (Å)	Atoms	Distance (Å)
Na(1)-Se(1)#1	3.298(7)	La(1)-Se(2)#7	3.1440(11)
Na(1)-Se(1)	2.902(5)	La(1)-Se(3)	3.0843(11)
Na(1)-Se(2)#3	2.921(5)	La(1)-Se(4)#2	3.0899(10)
Na(1)-Se(3)#4	3.210(6)	La(1)-Se(4)	3.0969(11)
Na(1)-Se(3)#5	3.256(6)	La(1)-Se(4)#7	3.2670(11)
Na(1)-Se(3)#1	3.334(7)	Si(1)-Se(1)	2.257(3)
La(1)-Se(1)#6	3.1654(11)	Si(1)-Se(2)	2.260(3)
La(1)-Se(1)#2	3.1332(11)	Si(1)-Se(3)	2.229(3)
La(1)-Se(2)#6	3.1166(11)	Si(1)-Se(4)	2.284(3)

Table S16. Selected bond lengths (Å) of NaLaSiSe₄.

#1 x, -y+1/2, z+1/2; #2 x, -y+1/2, z-1/2; #3 -x+1, y-1/2, -z+3/2; #4 -x+1, -y+1, -z+1; #5 -x+1, y-1/2, -z+1/2; #6 x, y, z-1; #7 -x, -y+1, -z.

Atoms	Angle (°)	Atoms	Angle (°)
Se(1)-Na(1)-Se(1)#1	74.61(15)	Se(3)-La(1)-Se(1)#2	72.75(3)
Se(1)-Na(1)-Se(2)#3	177.1(2)	Se(3)-La(1)-Se(1)#6	100.10(3)
Se(1)-Na(1)-Se(3)#4	84.22(14)	Se(3)-La(1)-Se(2)#7	145.43(3)
Se(1)-Na(1)-Se(3)#5	92.66(14)	Se(3)-La(1)-Se(2)#6	89.90(3)
Se(1)-Na(1)-Se(3)#1	72.13(14)	Se(3)-La(1)-Se(4)#2	141.30(3)
Se(1)#1-Na(1)-Se(3)#1	69.06(15)	Se(3)-La(1)-Se(4)#7	76.49(3)
Se(2)#3-Na(1)-Se(1)#1	103.84(18)	Se(3)-La(1)-Se(4)	75.16(3)
Se(2)#3-Na(1)-Se(3)#1	109.72(19)	Se(4)#2-La(1)-Se(1)#2	69.47(3)
Se(2)#3-Na(1)-Se(3)#4	93.29(16)	Se(4)-La(1)-Se(1)#2	77.52(3)
Se(2)#3-Na(1)-Se(3)#5	90.18(15)	Se(4)-La(1)-Se(1)#6	150.72(3)
Se(3)#4-Na(1)-Se(1)#1	86.55(14)	Se(4)#2-La(1)-Se(1)#6	77.15(3)
Se(3)#5-Na(1)-Se(1)#1	130.8(2)	Se(4)#2-La(1)-Se(2)#7	66.57(3)
Se(3)#4-Na(1)-Se(3)#1	149.5(2)	Se(4)-La(1)-Se(2)#6	137.64(3)
Se(3)#5-Na(1)-Se(3)#1	61.83(11)	Se(4)-La(1)-Se(2)#7	88.95(3)
Se(3)#4-Na(1)-Se(3)#5	140.3(3)	Se(4)#2-La(1)-Se(2)#6	123.50(3)
Se(1)#2-La(1)-Se(1)#6	73.55(2)	Se(4)-La(1)-Se(4)#7	67.44(3)
Se(1)#2-La(1)-Se(2)#7	134.13(3)	Se(4)#2-La(1)-Se(4)	88.69(3)
Se(1)#2-La(1)-Se(4)#7	138.06(3)	Se(4)#2-La(1)-Se(4)#7	129.48(2)
Se(1)#6-La(1)-Se(4)#7	140.51(3)	Se(1)-Si(1)-Se(2)	105.95(10)
Se(2)#7-La(1)-Se(1)#6	108.02(3)	Se(1)-Si(1)-Se(4)	102.68(10)
Se(2)#6-La(1)-Se(1)#2	135.92(3)	Se(2)-Si(1)-Se(4)	106.25(11)
Se(2)#6-La(1)-Se(1)#6	70.06(3)	Se(3)-Si(1)-Se(1)	113.86(12)
Se(2)#6-La(1)-Se(2)#7	81.42(3)	Se(3)-Si(1)-Se(2)	113.85(11)
Se(2)#6-La(1)-Se(4)#7	70.60(3)	Se(3)-Si(1)-Se(4)	113.29(10)
Se(2)#7-La(1)-Se(4)#7	69.05(3)		

Table S17. Selected bond angles (°) of NaLaSiSe₄.

#1 x, -y+1/2, z+1/2; #2 x, -y+1/2, z-1/2; #3 -x+1, y-1/2, -z+3/2; #4 -x+1, -y+1, -z+1; #5 -x+1, y-1/2, -z+1/2; #6 x, y, z-1; #7 -x, -y+1, -z.

				, ,	5	1	
No	Compound	Space	Band gap	SHG(×	LIDT(۸n	Ref
•		group	(eV)	AGS)	×AGS)		I CI
1	AgLaSiS ₄	$P2_{1}/c$	3.33 ^a	/	/	0.114	С
2	AgYSiS ₄	$P2_{1}/c$	3.18 ^a	/	/	0.129	С
3	NaLaSiS ₄	$P2_{1}/c$	3.83 ^b	/	/	0.130	С
4	NaLaSiSe ₄	$P2_{1}/c$	3.02 ^b	/	/	0.160	С
5	LiLaSiS ₄	Ama2	3.71ª	2	14	0.033	1
6	LiCeSiS ₄	Ama2	2.92ª	2.1	9	0.054	1
7	KLaSiS ₄	$P2_1$	3.31 ^b	0.2	/	0.048	2
8	KLaSiS ₄	$P2_{1}/m$	/	/	/	/	3
9	KYSiS ₄	$P2_{1}$	3.58 ^b	0.3	/	0.080	2
10	KCeSiS ₄	$P2_{1}$	2.33-2.51ª	/	/	/	4
11	KCeSiS ₄	$P2_{1}/m$	/	/	/	/	5
12	KPrSiS ₄	$P2_{1}$	/	/	/	/	6
13	KNdSiS ₄	$P2_{1}$	/	/	/	/	6
14	KEuSiS ₄	$P2_{1}$	1.72ª	/	/	/	7
15	KYbSiS ₄	$P2_1$	/	/	/	/	8
16	KLaSiSe ₄	$P2_{1}$	2.76 ^b	0.5	/	0.080	2
17	KPrSiSe ₄	$P2_{1}$	/	/	/	/	9
18	KLaGeS ₄	$P2_1$	3.34 ^a	1.2	/	0.098	10
19	KYGeS ₄	$P2_1$	3.15 ^a	1	/	0.12	11
20	KNdGeS ₄	$P2_{1}$	/	/	/	/	12
21	KEuGeS ₄	$P2_1$	1.71ª	/	/	/	7
22	KGdGeS ₄	$P2_1$	/	/	/	/	12
23	KTbGeS ₄	$P2_1$	/	/	/	/	13
24	KLaGeSe ₄	$P2_{1}$	2.47 ^b	1.2	/	0.106	2
25	KCeGeSe ₄	$P2_{1}$	1.70-1.93 ^a	/	/	/	9
26	KPrGeSe ₄	$P2_{1}$	/	/	/	/	13
27	KSmGeSe ₄	$P2_1$	2.2ª	/	/	/	14
28	RbLaSiS ₄	Pnma	/	/	/	/	3
29	RbCeSiS ₄	Pnma	/	/	/	/	6

Table S18. Structure and optical properties of the $A^{I}RE^{III}C^{IV}Q^{VI}_{4}$ ($A^{I} = Ag$, $Li \sim Cs$; $RE^{III} = Y$, $La \sim Nd$, $Sm \sim Yb$; $C^{IV} = Si$, Ge; $Q^{VI} = S$, Se) family compounds.

30	$RbPrSiS_4$	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
31	RbNdSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
32	RbEuSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	15
33	RbGdSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
34	RbTbSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
35	RbDySiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
36	RbHoSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
37	RbLaGeS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
38	RbEuGeS ₄	$P2_{1}/m$	/	/	/	/	9
39	RbSmGeSe ₄	$P2_{1}2_{1}2_{1}$	2.2ª	/	/	/	14
40	$CsLaSiS_4$	Pnma	/	/	/	/	6
41	CsCeSiS ₄	Pnma	/	/	/	/	16
42	CsPrSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
43	$CsNdSiS_4$	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
44	$CsSmSiS_4$	$P2_{1}2_{1}2_{1}$	/	/	/	/	17
45	CsEuSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	17
46	$CsGdSiS_4$	$P2_{1}2_{1}2_{1}$	/	/	/	/	17
47	CsTbSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	17
48	$CsDySiS_4$	$P2_{1}2_{1}2_{1}$	/	/	/	/	17
49	$CsHoSiS_4$	$P2_{1}2_{1}2_{1}$	/	/	/	/	17
50	CsErSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	17
51	CsTmSiS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	17
52	CsCeSiSe ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	16
53	CsLaGeS ₄	$P2_{1}2_{1}2_{1}$	3.6 ^a	0.01	/	/	6
54	CsCeGeS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
55	CsPrGeS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
56	CsNdGeS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
57	CsSmGeS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	18
58	CsEuGeS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
59	$CsGdGeS_4$	$P2_{1}/n$	/	/	/	/	6
60	CsTbGeS ₄	$P2_{1}2_{1}2_{1}$	/	/	/	/	6
61	CsSmGeSe ₄	$P2_{1}2_{1}2_{1}$	2.2ª	/	/	/	14

a: experimental band gap; *b*: theoretical band gap; *c*: this work.

Figure S1. Crystal structure of AgYSiS₄. (a, b, c) The coordination environments of Ag, Si, and Y atoms in the compound; (d) The formed [YSiS₁₀] dimer; (e) The formed [AgS₃] pseudo-layers in AgYSiS₄; (f) The 3D crystal structure of AgYSiS₄ viewed along *c* direction; (g) The formed 2D [YSiS₁₀]_{∞} layers viewed along *a* direction.

Figure S2. Crystal structure of NaLaSiS₄. (a-c) The coordination environments of Na, Si, and La atoms in the compound; (d) The formed $[LaSiS_{10}]$ dimer; (e) The formed channel-like $[NaS_6]_{\infty}$ framework in NaLaSiS₄; (f) The 3D crystal structure of NaLaSiS₄ viewed along *c* direction; (g) The formed 2D $[LaSiS_{10}]_{\infty}$ layers viewed along *a* direction.

Figure S3. Crystal structure of NaLaSiSe₄. (a-c) The coordination environments of Na, Si, and La atoms in the compound; (d) The formed [LaSiSe₁₀] dimer; (e) The formed channel-like [NaSe₆]_{∞} framework in NaLaSiSe₄; (f) The 3D crystal structure of NaLaSiSe₄ viewed along *c* direction; (g) The formed 2D [LaSiSe₁₀]_{∞} layers viewed along *a* direction.

Figure S4. X-ray energy dispersive spectra and mappings of (a) AgLaSiS₄, (b) AgYSiS₄, (c) NaLaSiS₄, and (d) NaLaSiS₄.

Figure S5. Raman spectra of (a) AgLaSiS₄, (b) AgYSiS₄, (c) NaLaSiS₄, and (d) NaLaSiSe₄.

Figure S6. The $[LaSiS]_{\infty}$ framework shape built by $[LaS_8]$ and $[SiS_4]$ in (a) $ALaSiS_4$ (A = Ag, Na, K, Rb, Cs), (b) LiLaSiS₄.

Figure S7. The $[AgS_3]$ (a), $[NaS_6]$ (b), $[KS_8]$ (c), $[RbS_8]$ (d), and $[CsS_8]$ (d) framework in ALaSiS₄ (A = Ag, Na, K, Rb, Cs).

Figure S8. The variation of layer spacing from $AgLaSiS_4$ to $NaLaSiS_4$ (a-b), and from $RbLaSiS_4$ to $CsLaSiS_4$ (c-d).

Figure S9. The optical images of $A^{I}RE^{III}SiQ^{VI}_{4}$ ($A^{I} = Ag$, Na; $RE^{III} = La$, Y; $Q^{VI} = S$, Se) before (a, c, e, g) and after (b, d, f, h) soaking in deionized water for 7 days.

Figure S10. The XRD patterns of the polycrystalline $AgLaSiS_4$ (a) and $AgYSiS_4$ (b) powder samples before and after exposure in air for 6 months.

Figure S11. The band structures, the total and partial density of states and the birefringence curves of (a, d, g) AgYSiS₄, (b, e, h) NaLaSiS₄, and (c, f, i) NaLaSiSe₄.

Figure S12. The band structures, and the total and partial density of states of La_2S_3 (a-b), $AgLaSiS_4$ (c-d).

Figure S13. The band structures, and the total and partial density of states of La_2S_3 (a-b), $NaLaSiS_4$ (c-d).

Figure S14. The band structures, and the total and partial density of states of Y_2S_3 (a-b), $AgYSiS_4$ (c-d).

Figure S15. Atomic models of $AgLaSiS_4$ (a), $NaLaSiS_4$ (b) and the virtual $AgLaSiS_4$ (c) from $NaLaSiS_4$.

References

- Y. Han, C. Hu, B. Li and J. Mao, LnLiSiS₄ (Ln = La and Ce): promising infrared nonlinear optical materials designed by aliovalent substitution from SrCdSiS₄, *Mater. Today Phys.*, 2023, **31**, 100987.
- L. Dong, S. Zhang, P. Gong, L. Kang and Z. Lin, Evaluation and prospect of midinfrared nonlinear optical materials in f⁰ rare earth (RE = Sc, Y, La) chalcogenides, *Coord. Chem. Rev.*, 2024, **509**, 215805.
- I. Hartenbach and T. Schleid, Thiosilicate der selten-erd-eemente: III. KLa[SiS₄] und RbLa[SiS₄] – ein struktureller vergleich, Z. Anorg. Allg. Chem., 2005, 631, 1365-1370.
- G. Gauthier, F. Guillen, S. Jobic, P. Deniard, P. Macaudière, C. Fouassier and R. Brec, Synthesis, structure and electronic properties of the cerium and potassium thiosilicate: KCeSiS₄, *Comptes Rendus de l'Académie des Sciences Series IIC Chem.*, 1999, 2, 611-616.
- I. Hartenbach and T. Schleid, Thiosilicate der selten-erd-elemente: i. die isotypen verbindungen KCe[SiS₄] und Eu₂[SiS₄], Z. Anorg. Allg. Chem., 2002, 628, 1327-1331.
- M. Usman, M. D. Smith, G. Morrison, V. V. Klepov, W. Zhang, P. S. Halasyamani and H. zur Loye, Molten alkali halide flux growth of an extensive family of noncentrosymmetric rare earth sulfides: structure and magnetic and optical (SHG) properties, *Inorg. Chem.*, 2019, 58, 8541-8550.
- Evenson and P. K. Dorhout, Synthesis and characterization of four new europium group XIV chalcogenides: K₂EuTSe₅ and KEuTS₄ (T = Si, Ge), *Inorg. Chem.*, 2001, 40, 2409-2414.
- A. Gray, J. Knaust, B. Chan, L. Polyakova and P. Dorhout, Crystal structure of potassium ytterbium (III) tetrathiosilicate, KYbSiS₄, *Z. Kristallogr. New cryst. struct.*, 2005, 220, 313-313.
- A. Choudhury, L. A. Polyakova, I. Hartenbach, T. Schleid and P. K. Dorhout, Synthesis, structures, and properties of layered quaternary chalcogenides of the general formula ALnEQ₄ (A= K, Rb; Ln= Ce, Pr, Eu; E= Si, Ge; Q= S, Se), Z.

Anorg. Allg. Chem., 2006, 632, 2395-2401.

- 10. Y. Liu, X. Li, S. Wu, M. Ma, X. Jiang, Y. Wu and D. Mei, A rare earth chalcogenide nonlinear optical crystal KLaGeS₄: achieving good balance among band gap, second harmonic generation effect, and birefringence, *Inorg. Chem.*, 2024, 63, 10938-10942.
- D. Mei, W. Cao, N. Wang, X. Jiang, J. Zhao, W. Wang, J. Dang, S. Zhang, Y. Wu,
 P. Rao and Z. Lin, Breaking through the "3.0 eV wall" of energy band gap in midinfrared nonlinear optical rare earth chalcogenides by charge-transfer engineering, *Mater. Horiz.*, 2021, 8, 2330-2334.
- 12. P. Wu and J. A. Ibers, Synthesis and structures of the quaternary chalcogenides of the type KLnMQ₄ (Ln = La, Nd, Gd, Y; M = Si, Ge; Q = S, Se), *J. Solid State Chem.*, 1993, **107**, 347-355.
- B. Chan and P. Dorhout, Crystal structures of potassium terbium (III) tetrasulfidogermanate, KTbGeS₄, and potassium praseodymium (III) tetraselenidogermanate, KPrGeSe₄, Z. Kristallogr. New cryst. struct., 2005, 220, 7-8.
- B. R. Martin and P. K. Dorhout, Molten flux synthesis of an analogous series of layered alkali samarium selenogermanate compounds, *Inorg. Chem.*, 2004, 43, 385-391.
- 15. A. Choudhury, L. A. Polyakova, I. Hartenbach, T. Schleid and P. K. J. I. c. Dorhout, Synthesis, structures, and properties of layered quaternary chalcogenides of the general formula ALnEQ₄ (A= K, Rb; Ln= Ce, Pr, Eu; E= Si, Ge; Q= S, Se), *Z. Anorg. Allg. Chem.*, 2006, **632**, 2395-2401.
- 16. I. Hartenbach and T. Schleid, The non-isotypic pair CsCe[SiS₄] and CsCe[SiSe₄]: A structural comparison, *J. Alloy Compd.*, 2006, **418**, 95-100.
- I. Hartenbach and T. Schleid, Thiosilicate der selten-erd-elemente: II. die nichtzentrosymmetrischen caesium-derivate CsM[SiS₄] (M = Sm Tm), Z. Anorg. Allg. Chem., 2003, 629, 394-398.
- 18. C. K. Bucher and S.-J. Hwu, CsSmGeS₄: a novel layered mixed-metal sulfide crystallizing in the noncentrosymmetric space group *P*2₁2₁2₁, *Inorg. Chem.*, 1994,

, 5831-5835.