Supporting Information

Towards ultra-sensitive multimodal luminescent thermometers enabled by high crystal field strength of Lu₂CaMg₂Ge₃O₁₂:Yb³⁺, Nd³⁺, Er³⁺ phosphors

Zhijiao Zhao¹, Mengmeng Dai¹, Kejie Li¹, Guiying Liang², Yanling Wei^{2,*}, Zuoling Fu^{1,*}

¹Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China. E-mail: <u>zlfu@jlu.edu.cn</u>(Z. Fu). Tel: +86-431-85167966. Fax: +86-431-85167966

²School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun 130052, China. E-mail: <u>weiyanling@jlenu.edu.cn</u> (Y. Wei)

Fig. S1. XRD patterns of (a) LCMG: x%Nd³⁺ (x=2, 4, 6, 8, 10) and LCMG: x%Yb³⁺, 6%Er³⁺ (x=3, 6, 9, 12, 15).

Fig. S2. Raman spectrum of the LCMG host.

Fig. S3. The integrated intensity of ⁴I_{13/2} emission in the LCMG:12%Yb³⁺,6Er³⁺.

Fig. S4. The repeatability of LIR of LCMG: 6%Yb³⁺, 6%Nd³⁺ phosphors.

Fig. S5. Temperature-dependent spectra of LCMG:12 %Yb³⁺,6%Er³⁺ with the temperature range from 313 K to 573 K, excited by 980 nm laser.

Fig. S6. (a) 25 measurements of LIR of LCMG: 12%Yb³⁺, 6%Er³⁺ phosphors at 333 K. (b) The temperature-recycle measurements of LIR values of LCMG: 12%Yb³⁺, 6%Er³⁺ phosphors.

Fig. S7. (a) Temperature-dependent LIR between ${}^{4}S_{3/2}$ and ${}^{4}F_{9/2}$ non-TCLs. (b) The calculated relative temperature sensitivity (S_r) and the absolutely temperature sensitivity (S_a) of Yb-Er in the temperature ranges of 313–573 K.

Fig. S8. (a)25 measurements of LIR of LCMG: 12%Yb³⁺, 6%Er³⁺ phosphors at 333 K.(b) The temperature-recycle measurements of LIR values of LCMG: 12%Yb³⁺, 6%Er³⁺ phosphors.

ion	coordination number	ionic radii (Å)
Lu ³⁺	8	0.977
Yb ³⁺	8	0.985
Nd ³⁺	8	1.109
Er ³⁺	8	1.004
Ca ²⁺	8	1.120
Mg ²⁺	6	0.720
Ge ⁴⁺	4	0.390

Table S1. The Ionic Radii of Lu³⁺, Yb³⁺, Nd³⁺, Er³⁺, Ca²⁺, Mg²⁺ and Ge⁴⁺ at certain coordination number.

bond type	Eg	Ks	<i>С</i> ^µ (eV)	f _c µ	α _b μ (A³)	β	۷ _b μ
Lu-O	19.9488	2.3297	19.4618	0.0482	0.2835	0.1640	3.8689
Ca-O	16.8773	2.1734	15.4803	0.0729	0.2579	0.1640	3.9132
Mg-O	19.7923	2.5450	18.3219	0.1431	0.1890	0.1640	2.0238
Ge-O	20.6571	3.1741	18.5793	0.1910	0.2709	0.1640	1.6134

Table S2. Calculated Environmental Factors and Bond Parameters of LCMG Crystals.

In Table 1, n_D represents refractivity; f_c denotes covalency; E_h and f_i denote the average homopolar energy and the average ionicity of chemical bond between the lanthanide ion and ligands; Z and N represent the average presented charge and the nearest total coordination number of ligands; α_p denotes the polarizability of the immediate environment around Er³⁺ ions.

In Table S2, E_g is the average energy gap between the bonding molecular orbital and the antibonding molecular orbital of the μ -type bond; f_c^{μ} represents the covalency of any μ -type bond; C^{μ} denotes the heteropolar energy; α_b^{μ} denotes the polarizability of the chemical bond volume; v_b^{μ} is the bond volume of any μ -type bond.