Modulation of the Near-Infrared-I and -II luminescence of Thulium-Incorporated Leadfree Double Perovskite

Jingheng Nie¹, Weitao Ying^{2, *}, Renping Cao¹, Sijie Liu¹, Shaobin Qiu³, Chaohong Liao¹, Xiangyan Yun⁴, Bang Lan^{1,*}, Jing Wang^{1, 5,*}

¹ Northeast Guangdong Key Laboratory of New Functional Materials, School of Chemistry and Environment, Jiaying University, Meizhou, 514015, P. R. China ² Department of Chemistry, Hengshui University, Hengshui, Hebei 053500, P. R. China

³ School of Physics and Electrical Engineering, Jiaying University, Meizhou, 514015, P. R. China

4 International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China

⁵ Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P. R. China

***W. Y. E-mail*:* 601706@hsnc.edu.cn

***B. L. E-mail*: jyulb6@163.com*

***J. W. E-mail*: ceswj@mail.sysu.edu.cn*

Experimental section

*1. Materials***:**

NaCl (99.99%), CsCl (99.99%), InCl₃ (99.99%), SbCl₃ (99.9%), TeO₂ (99.99%), and TmCl₃·6H₂O (99.99%) were purchased from Aladdin Reagent. Hydrochloric acid (HCl, analytical reagent grade) was purchased from Guangzhou Chemical Reagent Factory. All chemicals were used as received without any further purification.

2. Preparation of samples and LEDs:

2.1 **Preparation** of Sb^{3+}/Tm^{3+} -Codoped $Cs_2NalnCl_6$

 Sb^{3+}/Tm^{3+} -codoped $Cs_2NaInCl_6$ was synthesized by the hydrothermal method. First, 2 mmol of CsCl, 1 mmol of NaCl, 0.05 of mmol SbCl₃, a variable ratio of $TmCl_3·6H_2O$ to InCl₃ while keep the total amount of $TmCl_3·6H_2O$ and $InCl_3 1 mmol$, and 10 mL of HCl solution were added to a 25 ml stainless-steel autoclave. The sealed stainless steel reactor was heated at 180°C for 2 h, and kept for 12 h. The reactor was cooled to 50°C within 55 h, and finally cooled to room temperature (within 2 h). The single crystal was filtered, washed with isopropanol, and then dried at 60°C in an oven overnight.

2.2 **Preparation** of Te^{4+}/Tm^{3+} -Codoped Cs_2N and Cl_6

 Te^{4+}/Tm^{3+} -codoped $Cs_2NaInCl_6$ was synthesized by the hydrothermal method. First, 2 mmol of CsCl, 1 mmol of NaCl, 0.01 of mmol TeO₂, a variable ratio of $TmCl_3·6H_2O$ to InCl₃ while keep the total amount of $TmCl_3·6H_2O$ and $InCl_3 1 mmol$, and 10 mL of HCl solution were added to a 25 ml stainless-steel autoclave. The rest remains consistent.

2.3 Fabrication of NIR LEDs

2 g of the Cs₂NaInCl₆:Sb³⁺/Tm³⁺ or Cs₂NaInCl₆:Te⁴⁺/Tm³⁺ powder was dispersed into 1.5 g of organic silicone, and then the gel mixture obtained was fixed on the surface of multiple LED chips (Zhongke Haoye (Dongguan) Material Technology Co., Ltd.) with emission wavelengths of 310 nm and 410 nm. Finally, the LEDs obtained by this method were dried at 80℃ for 24 h in a vacuum drying chamber.

3. Characterization:

The PXRD measurements of samples were performed on a powder D2 diffractometer (Bruker) operating at 30 kV and 15 mA with monochromatized Cu-K α radiation (λ = 1.5418 Å). ICP-MS was performed with an ICP-MS spectrometer (Agilent 7700). The optical UV−vis absorption spectra were collected by a UV-2600i Plus spectrophotometer at room temperature, in which $BaSO₄$ was used as the reference standard. The PL, PLE, and microsecond level lifetime spectra were performed using an FS5 spectrophotometer (Edinburgh Instruments Ltd., U. K.) with different detectors (Visible PMT and InGaAs 1650). The PLQY spectra were performed using an FS5 fluorescence spectrometer equipped with relevant accessories. The photoluminescence quantum yield (PLQY) of NIR emission was measured according to the method reported by Zhang et al.^[1] The PL spectra of NIR LEDs were recorded on fiber spectrophotometer. NIR photographs were taken by a computer equipped with a domestic USB NIR camera.

PLQYs testing and calculation: To test the NIR PLQY of $Cs_2NalnCl₆:Sb^{3+/Tm³⁺}$ and $Cs₂NalnCl₆:Te^{4+/T}m³⁺ samples, two detectors (Visible PMT and InGaAs 1650) were$ used interchangeably. Taking $Cs_2NalnCl_6:Sb^{3+}/Tm^{3+}$ sample as an example. First, the visible (360~700 nm) PLQY of Cs₂NaInCl₆:Sb³⁺/Tm³⁺ sample was measured using a PMT detector and found to be 41.41%. Then, we used this detector to measure the PL spectrum from 360 nm to 850 nm. Subsequently, an InGaAs 1650 detector was selected to test the NIR spectrum from 800 nm to 1500 nm. After measuring both spectra, the PL spectrum from 800 nm to 850 nm measured by the PMT detector was normalized with the PL spectrum from 800 nm to 850 nm measured by the InGaAs 1650 detector (Formula S1). After normalization, the ratio of the spectral area in the visible range (360~700 nm) to that in the NIR range (NIR-Ⅰ: 700~1000 nm and NIR-Ⅱ: 1000-1400 nm) was determined to be S1:S2:S3 = 1:0.22:1.18 (Formula S2). Therefore, the NIR PLQY is estimated to be approximately 58% (Formula S3). And the PLQY of NIR emission from $Cs_2NalnCl₆:Te^{4+/Tm³⁺}$ sample has also undergone similar characterization tests. The specific calculations about $Cs_2NaInCl₆:Sb^{3+/}Im³⁺$ sample are as follows:

850 pm $\int I$ 800 nm $I_{PMT}(\lambda)d\lambda$ 850 pm $\int I_{InGaAs}(\lambda) d\lambda$ 800 nm $= 1 \#(51)$

$$
S1:S2:S3 = \int_{360\,nm}^{700\,nm} I_{PMT}(\lambda)d\lambda: \int_{800\,nm}^{1000\,nm} I_{InGaAs}(\lambda)d\lambda: \int_{1000\,nm}^{1400\,nm} I_{InGaAs}(\lambda)d\lambda
$$

$$
= 1:0.22:1.18\#(S2)
$$

$$
\frac{PLQY_{Vis}}{PLQY_{NIR}} = \frac{S1}{S2 + S3} \rightarrow PLQY_{NIR} = PLQY_{Vis} \times \frac{S2 + S3}{S1} = 58\% \# (S3)
$$

*First principles calculations***:** The first-principles calculations were performed using the Vienna ab initio simulation package (VASP)^{2,3}. A $1 \times 1 \times 2$ supercell structure (80 atoms) was set up for the $Cs₂NaInCl₆$ system. Five systems were calculated: the undoped Cs₂NaInCl₆ system, the Cs₂NaInCl₆:Sb³⁺ system (substituting one In³⁺ ion with a Sb^{3+} ion), the Cs₂NaInCl₆:Te⁴⁺ system (substituting one In³⁺ ion with a Te⁴⁺ ion), the Cs₂NaInCl₆:Sb³⁺/Tm³⁺ system (substituting two In³⁺ ions with a Sb³⁺ ion and a Tm^{3+} ion), and the Cs₂NaInCl₆:Te⁴⁺/Tm³⁺ system (substituting two In³⁺ ions with a Te^{4+} ion and a Tm^{3+} ion). The Perdew-Burke-Ernzerhof generalized gradient approximation (GGA) was applied^{4,5}. The convergence tolerances were set to 2×10^{-5} eV per atom for the energy, the energy cutoff was set to 450.0 eV and a $1 \times 1 \times 1$ Monkhorst–Pack k-point mesh was used for the calculations.

Figure S1. (a) XRD patterns of Cs₂NaInCl₆:Sb³⁺/Tm³⁺ with different Tm³⁺-doping concentrations. (b) XRD patterns of $Cs_2NaInCl_6$: Te⁴⁺/Tm³⁺ with different Tm³⁺-doping concentrations.

Figure S2. Absorption spectra of pure, Tm^{3+} -doped, Sb^{3+}/Tm^{3+} -codoped, and Te^{4+}/Tm^{3+} -codoped

 $Cs₂NalnCl₆.$

Figure S3. PL decay curves of (a) $Cs_2NalnCl_6:Sb^{3+}/Tm^{3+}$ ($\lambda_{ex} = 320$ nm, $\lambda_{em} = 808$ nm), (b) $Cs_2NalnCl_6:Te^{4+}/Tm^{3+} (\lambda_{ex} = 440 \text{ nm}, \lambda_{em} = 808 \text{ nm}).$

Figure S4. PLE spectra for $Cs_2NalnCl_6:Sb^{3+}/Bi^{3+}/Tm^{3+}$ at emission wavelengths of 450 nm.

Figure S5. PL spectra for Cs₂NaInCl₆:Sb³⁺/Bi³⁺/Tm³⁺ under different Bi³⁺ ions concentration.

Figure S6. (a) The PLE and PL spectra of Sb^{3+} , Sb^{3+}/Tm^{3+} and $Sb^{3+}/Tm^{3+}/Bi^{3+}$ doped $Cs_2NalnCl_6$.

(b) The PLE and PL spectra of Te⁴⁺, Te⁴⁺/Tm³⁺ and Te⁴⁺/Tm³⁺/Bi³⁺ doped Cs₂NaInCl₆.

Figure S7. (a) PLQY measurement of $Cs_2NalnCl₆:5%Sb^{3+/60%}Im³⁺$ in the visible region. (b) PL spectra of $Cs_2NaInCl_6:5\%Sb^{3+}/60\%Tm^{3+}$ in whole range of 400-1500 nm, and the integrated intensity of NIR and visible emission.

Figure S8. (a) PLQY measurement of Cs₂NaInCl₆:1%Te⁴⁺/50%Tm³⁺ in the visible region. (b) PL spectra of $Cs_2NaInCl_6:1\%Te^{4+/50}\%Tm^{3+}$ in whole range of 500-1400 nm, and the integrated intensity of NIR and visible emission.

Figure S9. PLE spectra of (a) $Cs_2NalnCl_6:5\%Sb^{3+}/60\%Tm^{3+}$, (b) $Cs_2NalnCl_6:1\%Te^{4+}/50\%Tm^{3+}$.

Figure S10. PL spectra of (a) $Cs_2NalnCl_6:5\%Sb^{3+}/60\%Tm^{3+}$, (b) $Cs_2NalnCl_6:1\%Te^{4+}/50\%Tm^{3+}$ under different excitation wavelength.

Figure S11. Absorption and excitation spectrum of Tm^{3+} ions and Sb^{3+} emission in $Cs_2NaInCl_6$.

Figure S12. The density of states of Cs₂NaInCl₆.

Figure S13. PL intensity of (a) $Cs_2NaInCl_6:Sb^{3+}/Tm^{3+}$ and (b) $Cs_2NaInCl_6:Te^{4+}/Tm^{3+}$ after exposing at ambient air for 2 months. PXRD patterns of (c) $Cs_2NalnCl₆:Sb^{3+/Tm³⁺}}$ and (d) $Cs₂NalnCl₆:Te^{4+/Tm³⁺}$ after 90 days of exposure to light and moisture conditions.

Figure S14. The PL-temperature correlation maps of (a) $Cs_2NalnCl_6:5\%Sb^{3+}/60\%Tm^{3+}$ and $Cs₂NalnCl₆:1%Te^{4+/50%}Im³⁺ maintained at 400 K for 6 h.$

Feeding ratio		Actual	
Sb^{3+}	Tm^{3+}	Sb^{3+}	Tm^{3+}
5%	20%	0.11%	0.51%
5%	30%	0.14%	0.73%
5%	50%	0.23%	1.31%
5%	60%	0.30%	2.98%
5%	70%	0.65%	7.26%

Table S1. ICP elemental analysis of $Cs₂NalnCl₆:Sb^{3+/}/Tm³⁺$

Table S2. ICP elemental analysis of $Cs₂NalnCl₆:Te^{4+/Tm³⁺}$

Actual	
Tm^{3+}	
0.18%	
0.41%	
1.79%	
2.32%	
5.36%	

Table S3. The PL lifetimes of Cs₂NaInCl₆:Sb/Tm monitored at 450 nm.

Table S4. The PL lifetimes of Cs₂NaInCl₆:Te/Tm monitored at 620 nm.

Lifetime	620 nm (μ s)	$\eta_T(\%)$	
$Cs2NalnCl6:Te4+$	1.51		
$Cs_2NalnCl_6$:Te ⁴⁺ /Tm ³⁺ (10%)	1.46	3.31	
$Cs_2NalnCl_6$:Te ⁴⁺ /Tm ³⁺ (20%)	1.29	14.57	
$Cs_2NalnCl_6$:Te ⁴⁺ /Tm ³⁺ (30%)	1.18	21.85	
$Cs_2NalnCl_6$:Te ⁴⁺ /Tm ³⁺ (40%)	0.96	36.42	
$Cs_2NalnCl_6$:Te ⁴⁺ /Tm ³⁺ (50%)	0.94	37.75	
$Cs_2NalnCl_6$:Te ⁴⁺ /Tm ³⁺ (60%)	0.86	43.05	
$Cs_2NalnCl_6$:Te ⁴⁺ /Tm ³⁺ (70%)	0.85	43.71	

References:

- 1. N. Liu, W. Zheng, R. Sun, X. Li, X. Xie, L. Wang, Y. Zhang, Adv. Funct. Mater. 32, 2110663 (2022).
- 2. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- 3. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- 4. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- 5. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 80, 891 (1998).