Supporting Information For

Computer-Aided Screening of Bismuth Molybdates Nonlinear Optical

Crystals y-Bi₂MoO₆

Xuefan Wang, Yan Xiao, Wenjing Tan, Hongbo Huang, Daqing Yang, Ying Wang, Bingbing Zhang*

College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China.

Corresponding Author Bingbing Zhang Email: zhangbb@hbu.edu.cn

Table S1. The chemical formula, ICSD collection-code, space group, band gap (Eg), birefringence (Δ n), second-order susceptibility ($\chi^{(2)}$), and the maximum $\chi^{(2)}$ tensor of 5 bismuth molybdates.

Table S2. Calculation of dipole moments of the Mo-O and Bi-O Polyhedra for *γ*-Bi₂MoO₆.

Table S3. Calculation of dipole moments of the Mo-O and Bi-O Polyhedra for $Bi_{10}Mo_3O_{24}$.

Figure S1. The Mo respective coordination polyhedra of γ -Bi₂MoO₆ (a) and Bi₁₀Mo₃O₂₄ (b).

Figure S2. The Bi respective coordination polyhedra of γ -Bi₂MoO₆, with purple arrows indicating the directions of the group's dipole moments.

Figure S3. The Bi respective coordination polyhedra of Bi₁₀Mo₃O₂₄, with purple arrows indicating the directions of the group's dipole moments.

Figure S4. The $[Bi_{10}O_{12}]_n$ layer (a). The ten-membered ring channels (b). Projection of $Bi_{10}Mo_3O_{24}$ refined crystal structure on to (010) plane (c).

Figure S5. The dipole moment directions generated by the asymmetric Bi-O groups in γ -Bi₂MoO₆ (a) and Bi₁₀Mo₃O₂₄ (b). (γ -Bi₂MoO₆ is along the c-axis, Bi₁₀Mo₃O₂₄ is along the b-axis.)

Figure S6. The TG-DSC curves of γ Bi₂MoO₆ (a) and Bi₁₀Mo₃O₂₄ (c). The XRD patterns of the γ Bi₂MoO₆ (b) and Bi₁₀Mo₃O₂₄ (d) samples obtained at different calcination temperatures.

Figure S7. The infrared vibration mode of γ -Bi₂MoO₆.

Figure S8. The infrared vibration mode of $Bi_{10}Mo_3O_{24}$.

Figure S9. The bandgap of γ -Bi₂MoO₆ calculated using the HSE06 method.

Figure S10. Partial DOSs of Bi1-Bi5 atoms from $Bi_{10}Mo_3O_{24}$ (a). The ELF of $Bi_{10}Mo_3O_{24}$ (b). The ELF for five independent Bi atoms in $Bi_{10}Mo_3O_{24}$ (c).

Figure S11. SHG density maps of occupied orbitals of the largest SHG coefficient d_{24} of γ -Bi₂MoO₆ in different density color scale.

Figure S12. SHG density maps of occupied and unoccupied orbitals of the largest SHG coefficient d_{22} for $Bi_{10}Mo_3O_{24}$.

No.	Formula	ICSD	Space groups	Eg-GGA(eV)	Δn	χ ⁽²⁾ (pm/V)	χ ⁽²⁾ _{max} (pm/V)
1	Bi₂MoO ₆	47139	Pca2 ₁	1.246	0.345	χ ₁₁₃ =-48.40; χ ₂₂₃ =125.05; χ ₃₃₃ =95.38	125.05
2	Bi ₂ MoO ₆	201685	Pca2 ₁	1.251	0.354	χ ₁₁₃ =-48.54; χ ₂₂₃ =124.85; χ ₃₃₃ =94.79	124.85
3	Bi₂MoO ₆	14266	Pca2 ₁	1.238	0.356	χ ₁₁₃ =-50.31; χ ₂₂₃ =124.58; χ ₃₃₃ =94.92	124.58
4	Bi ₁₀ Mo ₃ O ₂₄	262963	C2	1.939	0.089	χ_{112} =-10.00; χ_{123} =16.41; χ_{222} =10.19; χ_{233} =11.43	16.41
5	Bi ₁₀ Mo ₃ O ₂₄	173837	C2	1.948	0.079	χ_{112} =-9.67; χ_{123} =16.16; χ_{222} =8.41; χ_{233} =9.99	16.16
6	Bi ₁₄ Mo ₅ O ₃₆	262964	C2	1.689	0.186	χ_{112} =0.06; χ_{123} =-9.85; χ_{222} =2.80; χ_{233} =0.71	9.85
7	Cs ₂ NaBi(MoO ₄) ₃	428061	R3c	2.475	0.042	χ_{113} =2.96; χ_{122} =0.52; χ_{222} =- 0.02; χ_{223} =2.96; χ_{333} =-3.50;	3.50
8	Cs₅Bi(MoO₄)₄	20845	Cc	2.838	0.022	χ_{111} =0.45; χ_{113} =0.50; χ_{122} =- 0.41; χ_{223} =-0.09; χ_{333} =-1.54	1.54

Table S1. The chemical formula, ICSD collection-code, space group, band gap (Eg), birefringence (Δ n), second-order susceptibility ($\chi^{(2)}$), and the maximum $\chi^{(2)}$ tensor of 5 bismuth molybdates.

		Symmetry code of cations	dipole moment				
	Species		x (a)	y (b)	z (c)	magnitude	
						debye	× 10 ⁻¹⁸
							esu∙cm/ų
	Mo(1)O ₆	1+x, y, 1+z	0.053	-2.657	7.505	7.962	0.016
		1/2-х, ү, 1/2+z	-0.054	-2.658	7.506	7.963	0.016
		1-x, 1-y, 1/2+z	-0.054	2.659	7.504	7.961	0.016
		1/2+x,1-y,1+z	0.056	2.663	7.508	7.967	0.016
		∑Mo(1)O ₆		0.007	30.024	30.036	0.061
		3/2-x, y, -1/2+z	-8.930	13.602	-6.180	17.405	0.036
	Bi(1)O ₆	х,ү,z	8.931	13.600	-6.177	17.404	0.036
		1-x, 1-y, -1/2+z	-8.932	-13.601	-6.179	17.405	0.036
γ−Bi₂MoO ₆		−1/2+x, 1−y, z	8.934	-13.600	-6.180	17.406	0.036
		∑Bi(1)O ₆	0.003	0.001	-24.717	24.710	0.050
	B;(2)O	х,ү,z	-4.588	-12.895	-6.288	15.062	0.031
		1/2-x, y,-1/2+z	4.590	-12.894	-6.286	15.061	0.031
	ы(2)06	1/2+x,1-y,z	-4.585	12.895	-6.287	15.061	0.031
		1-x,1-y,-1/2+z	4.588	12.895	-6.287	15.062	0.031
		∑Bi(2)O ₆	0.004	0.001	-25.149	25.140	0.051
	∑Bi-O	/	0.008	0.003	-49.866	49.850	0.102
		Unit cell	0.009	0.009	-19.842	19.813	0.040

Table S2. Calculation of dipole moments of the Mo-O and Bi-O Polyhedra for γ -Bi₂MoO₆

		Symmetry code of cations	dipole moment				
				y (b)	z (c)	magnitude	
	Species		x (a)				× 10 ⁻¹⁸
						debye	esu∙cm/ų
		1-x, y, 1-z	5.082	-1.940	-1.972	5.961	0.005
		х, у, z	-5.085	-1.937	1.970	5.962	0.005
	M0(1)O ₄	1/2+x, 1/2+y, z	-5.083	-1.938	1.973	5.962	0.005
		1/2-x, 1/2+y, 1-z	5.082	-1.941	-1.972	5.961	0.005
		∑Mo(1)O4	-0.004	-7.757	-0.001	7.766	0.007
	14-(2)0	1+x, y, 1+z	-0.002	-1.716	-0.001	1.716	0.001
	M0(2)U4	1/2+x, 1/2+y, 1+z	-0.001	-1.714	0.000	1.714	0.001
		∑Mo(2)O ₄	-0.004	-3.430	-0.001	3.438	0.003
	∑Mo-O	/	-0.008	-11.187	-0.003	11.204	0.010
		1-x, y, 1-z	9.329	-1.501	18.527	19.929	0.017
	5:(1)0	х, y, z	-9.318	-1.502	-18.517	19.916	0.017
	BI(1)O ₅	1/2+x, 1/2+y, z	-9.323	-1.503	-18.523	19.923	0.017
		1/2-x, 1/2+y, 1-z	9.322	-1.503	18.522	19.922	0.017
		∑Bi(1)O₅	0.011	-6.009	0.010	5.977	0.005
		1-x, -1+y, 1-z	0.915	18.293	-4.364	18.850	0.016
	Bi(2)O ₄	х, —1+у, z	-0.915	18.293	4.364	18.850	0.016
		1/2+x, -1/2+y, z	-0.915	18.293	4.364	18.850	0.016
		1/2-x, -1/2+y, 1-z	0.915	18.293	-4.364	18.850	0.016
BI ₁₀ IVIO ₃ O ₂₄		∑Bi(2)O ₄	0.000	73.173	0.000	73.173	0.063
		1-x, y, 1-z	-3.893	8.212	-12.164	14.862	0.013
	Bi(3)O ₅	х, у, z	3.891	8.210	12.165	14.861	0.013
		1/2+x,1/2+y, z	3.891	8.210	12.165	14.861	0.013
		1/2-x, 1/2+y, 1-z	-3.894	8.210	-12.165	14.862	0.013
		∑Bi(3)O₅	-0.004	32.842	0.001	32.837	0.028
	5:///0	1-x, -1+y, 1-z	-0.758	-7.215	13.370	15.280	0.013
		x, -1+y, z	0.758	-7.213	-13.370	15.279	0.013
	BI(4)O ₆	1/2+x, -1/2+y, z	0.761	-7.214	-13.368	15.278	0.013
		1/2-х, -1/2+у, 1-z	-0.756	-7.216	13.372	15.282	0.013
		∑Bi(4)O ₆	0.004	-28.859	0.003	28.847	0.025
		1-x, y, 1-z	3.271	-6.099	15.107	16.310	0.014
	D://5/0	х, у, z	-3.271	-6.095	-15.108	16.310	0.014
	ы(э)∪₅	1/2+x, 1/2+y, z	-3.272	-6.097	-15.107	16.309	0.014
		1/2-x, 1/2+y, 1-z	3.271	-6.097	15.109	16.311	0.014
		∑Bi(5)O₅	-0.001	-24.388	0.001	24.388	0.021
	∑Ві-О	/	0.009	46.759	0.015	46.797	0.040
	Unit cell		0.001	35.572	0.013	35.594	0.031

Table S3. Calculation of dipole moments of the Mo-O and Bi-O Polyhedra for $Bi_{10}Mo_3O_{24}$

Figure S1. The Mo respective coordination polyhedra of γ -Bi₂MoO₆ (a) and Bi₁₀Mo₃O₂₄ (b).

Figure S2. The Bi respective coordination polyhedra of γ -Bi₂MoO₆, with purple arrows indicating the directions of the group's dipole moments.

Figure S3. The Bi respective coordination polyhedra of $Bi_{10}Mo_3O_{24}$, with purple arrows indicating the directions of the group's dipole moments.

Figure S4. The $[Bi_{10}O_{12}]n$ layer (a). The ten-membered ring channels (b). Projection of $Bi_{10}Mo_3O_{24}$ crystal structure on to (010) plane (c).

Figure S5. The dipole moment directions generated by the asymmetric Bi-O groups in γ -Bi₂MoO₆ (a) and Bi₁₀Mo₃O₂₄ (b). (γ -Bi₂MoO₆ is along the c-axis, Bi₁₀Mo₃O₂₄ is along the b-axis.)

Figure S6. The TG-DSC curves of γ -Bi₂MoO₆ (a) and Bi₁₀Mo₃O₂₄ (c). The XRD patterns of the γ -Bi₂MoO₆ (b) and Bi₁₀Mo₃O₂₄ (d) samples obtained at different calcination temperatures.

Figure S7. The infrared vibration mode of γ -Bi₂MoO₆.

Figure S8. The infrared vibration mode of $Bi_{10}Mo_3O_{24}$.

Figure S9. The bandgap of γ -Bi₂MoO₆ calculated using the HSE06 method.

Figure S10. Partial DOSs of Bi1-Bi5 atoms from $Bi_{10}Mo_3O_{24}$ (a). The ELF of $Bi_{10}Mo_3O_{24}$ (b). The ELF for five independent Bi atoms in $Bi_{10}Mo_3O_{24}$ (c).

Figure S11. SHG density maps of occupied orbitals of the largest SHG coefficient d_{24} of γ -Bi₂MoO₆ in different density color scale.

Figure S12. SHG density maps of occupied and unoccupied orbitals of the largest SHG coefficient d_{22} for $Bi_{10}Mo_3O_{24}$.