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SI 1: Synthesis and Characterization Methods

Synthesis of MOF-177

MOF-177 was prepared based on the literature methods!?. Powder X-ray diffraction
(PXRD) data of MOF-177 (Supplementary Information Figure S1) showed a close
match with the theoretical result, and the cell parameters of MOF-177 determined by
the single crystal X-ray diffraction (a hexagonal crystal system with cell sizes of a =
36.797 A, b =136.814 A, and c = 29.796 A at 153 K) were consistent with the previous

report?.

Synthesis of N@Ce@MOF-177

Add 1 ml 1000 ppm N@Cs solution of toluene to a sample flask containing 20 mg
of MOF-177 crystals and then keep it for more than a week to ensure that N@Cg can
fully enter the MOF-177. After that, the MOF-177 crystals changed from colorless to

purple, and the color of the solution became lighter.
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Figure S1. PXRD spectra of as-prepared MOF-177 (red) and the simulated spectra of
MOF-177 (blue).
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Figure S2. IR-ATR spectra of MOF-177 powder (black) and C¢e@MOF-177 powder

(red).
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Figure S3. Solid-state Ultraviolet—visible spectra of Cgy powder (black), MOF-177

powder (red), Cg@MOF-177 powder (green) and N@Cgq@MOF-177 powder

(purple).
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Figure S4. Raman spectra of MOF-177 powder.

5U8220 15.0kV 8.8mm x600 SE(U) 50.0pm

d

SU8220 15.0kV 9.0mm x8.00k SE(U) J 5.00pm  SU8220 15.0kV 9.5mm x700 SE(U) 50.0pm

Figure S5. (a) SEM images of MOF-177 at 5 ps scale and (b) 50 us scale. (c) SEM
images of N@Cg@MOF-177 at 5 ps scale and (d) 50 us scale.



SI 2: Variable temperature cw-EPR spectrum of N@Cg, powder
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Figure S6. Variable temperature cw-EPR spectrum of N@Cgy powder.



SI 3: Simulations of EDFS spectrum of N@Cgs powder and N@Cgq@MOF-177

powder
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Figure S7. (a) Simulations of EDFS spectrum for N@Cgy powder sample at 293 K and

(b) 100 K. (c) Simulations of EDFS spectrum for N@Cg@MOF-177 powder sample

at 293 K and (d) 100 K.



SI 4: Ty measurements and simulations of N@Cg powder and N@Cgq@MOF-177

powder
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Figure S8. (a) Variable temperature 7 data and simulations of the N@Cgy powder
sample at the left peak (3404.8 G) (b) the central peak (3410.6 G) and (c) the right peak
(3416.1 G). (d) Variable temperature 7; data and simulations of the N@Cg@MOF-
177 powder sample at the left peak (3404.8 G) (e) the central peak (3410.6 G) and (f)
the right peak (3416.1 G).



All the inversion recovery data are fitted with a mono-exponential attenuation

function in Eq. S1,

I(t) =1(0)exp (—;) + C#(Eq.S1)

N@Cgo powder
Ti/ms
T/K Left peak Central peak Right peak
(3404.8 G) (3410.6 G) (3416.1 G)
293 K 0.179(1) 0.175(4) 0.173(2)
100 K 0.715(16) 0.678(13) 0.715(17)
N@Cs@MOF-177 powder
T,/ms
T/K Left peak Central peak Right peak
(3404.8 G) (3410.6 G) (3416.1 G)
293 K 0.093(3) 0.099(2) 0.096(3)
100 K 1.126(19) 1.101(19) 1.081(21)
10K i 22 (1) ]

Table S1. Variable temperature 7 values of N@Cgo and N@Cg@MOF-177 powder
sample. All the 7 values were obtained at the 9.56 GHz microwave frequency with the

microwave power attenuation of 18 dB.



SI 5: T,, measurements and simulations of N@Cg powder and N@Cgq@MOF-177

powder
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Figure S9. (a) Variable microwave power Ti, data and simulations of the N@Csgo
powder sample at the left peak (3404.8 G) (b) the central peak (3410.6 G) and (c) the
right peak (3416.1 G). (d) Variable microwave power T}, data and simulations of the
N@Cgs@MOF-177 powder sample at the left peak (3404.8 G) (b) the central peak
(3410.6 G) and (c) the right peak (3416.1 G).



All the Hahn-echo decay data are fitted with a mono-exponential attenuation

function in Eq. S1.
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Figure S10. (a) 7, data and simulations of the N@Cg powder sample and
N@Cg@MOF-177 powder sample at the left peak (3404.8 G) (b) the central peak
(3410.6 G) and (c) the right peak (3416.1 G) at low temperature.



N@Cg powder
Tw/us
T/K Left peak Central peak Right peak
(3404.8 G) (3410.6 G) (3416.1 G)
1.700(16)? 1.586(11)2 1.773(9)8
293 K 1.532(15)b 1.569(17)° 1.997(32)°
1.383(40)¢ 1.238(41) 1.568(21)¢
100 K 2.042(17) 2.092(1) 2.122(23)°
N@Cs@MOF-177 powder
Tw/us
r/K Left peak Central peak Right peak
(3404.8 G) (3410.6 G) (3416.1 G)
1.263(67) 1.224(53)2 1.214(71y
293 K 1.125(59)° 1.216(56)° 1.273(75)b
1.334(70)° 1.372(76)° 1.237(72)
100 K 3.560(47) 3.507(1) 3.635(46)"
10K 1.97(11) 5.09(12)8 5.36(19)

Table S2. Variable temperature and microwave power T}, values of N@Cgy powder
sample and N@Cg@MOF-177 powder sample. All the 7} values were obtained at the
9.56 GHz microwave frequency with the microwave power attenuation of 2 24 dB,b 21

dB and°©18 dB.



SI 6: Rabi oscillations of N@Cg powder and N@Cg@MOF-177 powder
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Figure S11. (a)Variable B, Rabi oscillation data and the linear simulations of the fast

Fourier Transform (FFT) results of N@Cgp powder sample at 293 K, (b)100 K and (c)

N@Cgs@MOF-177 powder at 293 K.



SI 7: EPR measurements conditions

Both of the cw- and pulsed-EPR data were measured on X-band
Chinainstru&Quantumtech (Hefei) EPR100 spectrometer with a pulse-probe cavity
(9.56 GHz). The low-temperature environment was achieved by liquid helium
cryostats. The signal of the pulsed-EPR experiments was collected by integrating the
Hahn-echo (n/2-t-n-7-echo) with 7 = 400 ns. The 7; values were measured by the
inversion recovery method (m-7-n/2-t-n-t-echo) with 2-step phase cycling. The T;,
values were obtained by using the Hahn-echo sequence with 2-step phase cycling. The
Rabi oscillations were obtained by nutation sequence (#,-7-n/2-7-n-7-echo), where £, is
the duration time of the nutation pulse and 7 is longer than 57},,. Two pulse (2p-) and
three pulse (3p-) electron spin echo envelope modulation (ESEEM) experiments were
carried out with the standard sequences (n/2-7-n-7-echo) and (n/2-7-n/2-T-n/2-7-echo).
The n/2 and = pulse lengths in EDFS, T}, and T}, measurements were 120 and 240 ns
with 18 dB attenuation of the microwave power 450 W, respectively. In nutation
experiments, the /2 pulse lengths were adjusted to 20, 40, 80, 160,320 ns by 0, 6, 12,
18, and 24 dB attenuation. In 2p- and 3p-ESEEM experiments, the /2 pulse lengths
were set to 20 ns by 0 dB attenuation to collect the clear modulation signal of the 'H

nuclear spin.
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