Supporting Information

3D-Assembled Endohedral Nitrogen Fullerene in Metal–Organic Framework toward Spin Qubit and Quantum Sensing

Xin-Yu Hui‡, Yu-Shuang Zhang‡, Qi Xiong, Zhi-Rong Wu, Song Gao, Shen Zhou*, and Shang-Da Jiang*

Contents

SI 1: Synthesis and Characterization Methods

SI 2: Variable temperature cw-EPR spectrum of N@C₆₀ powder

SI 3: Simulations of EDFS spectrum of N@C₆₀ powder and N@C₆₀@MOF-177 powder

SI 4: *T*₁ measurements and simulations of N@C₆₀ powder and N@C₆₀@MOF-177 powder

SI 5: T_m measurements and simulations of N@C₆₀ powder and N@C₆₀@MOF-177 powder

SI 6: Rabi oscillations of N@C₆₀ powder and N@C₆₀@MOF-177 powder

SI 7: EPR measurements conditions

SI 1: Synthesis and Characterization Methods

Synthesis of MOF-177

MOF-177 was prepared based on the literature methods^{1,2}. Powder X-ray diffraction (PXRD) data of MOF-177 (Supplementary Information Figure S1) showed a close match with the theoretical result, and the cell parameters of MOF-177 determined by the single crystal X-ray diffraction (a hexagonal crystal system with cell sizes of a = 36.797 Å, b = 36.814 Å, and c = 29.796 Å at 153 K) were consistent with the previous report².

Synthesis of N@C₆₀@MOF-177

Add 1 ml 1000 ppm N@C₆₀ solution of toluene to a sample flask containing 20 mg of MOF-177 crystals and then keep it for more than a week to ensure that N@C₆₀ can fully enter the MOF-177. After that, the MOF-177 crystals changed from colorless to purple, and the color of the solution became lighter.

Figure S1. PXRD spectra of as-prepared MOF-177 (red) and the simulated spectra of MOF-177 (blue).

Figure S2. IR-ATR spectra of MOF-177 powder (black) and C₆₀@MOF-177 powder (red).

Figure S3. Solid-state Ultraviolet–visible spectra of C_{60} powder (black), MOF-177 powder (red), C_{60} @MOF-177 powder (green) and N@C_{60}@MOF-177 powder (purple).

Figure S4. Raman spectra of MOF-177 powder.

Figure S5. (a) SEM images of MOF-177 at 5 μ s scale and (b) 50 μ s scale. (c) SEM images of N@C₆₀@MOF-177 at 5 μ s scale and (d) 50 μ s scale.

SI 2: Variable temperature cw-EPR spectrum of N@C₆₀ powder

Figure S6. Variable temperature cw-EPR spectrum of N@C₆₀ powder.

SI 3: Simulations of EDFS spectrum of N@C₆₀ powder and N@C₆₀@MOF-177 powder

Figure S7. (a) Simulations of EDFS spectrum for N@C₆₀ powder sample at 293 K and (b) 100 K. (c) Simulations of EDFS spectrum for N@C₆₀@MOF-177 powder sample at 293 K and (d) 100 K.

SI 4: T_1 measurements and simulations of N@C₆₀ powder and N@C₆₀@MOF-177 powder

Figure S8. (a) Variable temperature T_1 data and simulations of the N@C₆₀ powder sample at the left peak (3404.8 G) (b) the central peak (3410.6 G) and (c) the right peak (3416.1 G). (d) Variable temperature T_1 data and simulations of the N@C₆₀@MOF-177 powder sample at the left peak (3404.8 G) (e) the central peak (3410.6 G) and (f) the right peak (3416.1 G).

All the inversion recovery data are fitted with a mono-exponential attenuation function in Eq. S1,

$$I(t) = I(0)\exp\left(-\frac{t}{T}\right) + C\#(Eq.S1)$$

N@C ₆₀ powder					
	T_1/ms				
<i>T /</i> K	Left peak	Central peak	Right peak		
	(3404.8 G)	(3410.6 G)	(3416.1 G)		
293 K	0.179(1)	0.175(4)	0.173(2)		
100 K	0.715(16)	0.678(13)	0.715(17)		
N@C ₆₀ @MOF-177 powder					
<i>T /</i> K	$T_{\rm l}/{ m ms}$				
	Left peak	Central peak	Right peak		
	(3404.8 G)	(3410.6 G)	(3416.1 G)		
293 K	0.093(3)	0.099(2)	0.096(3)		
100 K	1.126(19)	1.101(19)	1.081(21)		
10 K	-	22 (1)	-		

Table S1. Variable temperature T_1 values of $\mathbf{N}@\mathbf{C}_{60}$ and $\mathbf{N}@\mathbf{C}_{60}@\mathbf{MOF-177}$ powder sample. All the T_1 values were obtained at the 9.56 GHz microwave frequency with the microwave power attenuation of 18 dB.

SI 5: T_m measurements and simulations of N@C₆₀ powder and N@C₆₀@MOF-177

Figure S9. (a) Variable microwave power T_m data and simulations of the N@C₆₀ powder sample at the left peak (3404.8 G) (b) the central peak (3410.6 G) and (c) the right peak (3416.1 G). (d) Variable microwave power T_m data and simulations of the N@C₆₀@MOF-177 powder sample at the left peak (3404.8 G) (b) the central peak (3410.6 G) and (c) the right peak (3416.1 G).

All the Hahn-echo decay data are fitted with a mono-exponential attenuation function in Eq. S1.

Figure S10. (a) $T_{\rm m}$ data and simulations of the N@C₆₀ powder sample and N@C₆₀@MOF-177 powder sample at the left peak (3404.8 G) (b) the central peak (3410.6 G) and (c) the right peak (3416.1 G) at low temperature.

N@C ₆₀ powder					
	$T_{ m m}/\mu{ m s}$				
<i>T /</i> K	Left peak	Central peak	Right peak		
	(3404.8 G)	(3410.6 G)	(3416.1 G)		
293 K	1.700(16) ^a	1.586(11) ^a	1.773(9) ^a		
	1.532(15) ^b	1.569(17) ^b	1.997(32) ^b		
	1.383(40)°	1.238(41)°	1.568(21)°		
100 K	2.042(17) ^a	2.092(1) ^a	2.122(23) ^a		
N@C ₆₀ @MOF-177 powder					
	$T_{ m m}/\mu{ m s}$				
T/K	Left peak	Central peak	Right peak		
	(3404.8 G)	(3410.6 G)	(3416.1 G)		
293 K	1.263(67) ^a	1.224(53) ^a	1.214(71) ^a		
	1.125(59) ^b	1.216(56) ^b	1.273(75) ^b		
	1.334(70)°	1.372(76)°	1.237(72)°		
100 K	3.560(47) ^a	3.507(1) ^a	3.635(46) ^a		
10 K	1.97(11) ^a	5.09(12) ^a	5.36(19) ^a		

Table S2. Variable temperature and microwave power $T_{\rm m}$ values of N@C₆₀ powder sample and N@C₆₀@MOF-177 powder sample. All the T_1 values were obtained at the 9.56 GHz microwave frequency with the microwave power attenuation of a 24 dB, b 21 dB and c18 dB.

SI 6: Rabi oscillations of N@C₆₀ powder and N@C₆₀@MOF-177 powder

Figure S11. (a)Variable B_1 Rabi oscillation data and the linear simulations of the fast Fourier Transform (FFT) results of N@C₆₀ powder sample at 293 K, (b)100 K and (c) N@C₆₀@MOF-177 powder at 293 K.

SI 7: EPR measurements conditions

Both of the cw- and pulsed-EPR data were measured on X-band Chinainstru&Quantumtech (Hefei) EPR100 spectrometer with a pulse-probe cavity (9.56 GHz). The low-temperature environment was achieved by liquid helium cryostats. The signal of the pulsed-EPR experiments was collected by integrating the Hahn-echo ($\pi/2-\tau-\pi-\tau$ -echo) with $\tau = 400$ ns. The T_1 values were measured by the inversion recovery method (π -T- $\pi/2$ - τ - π - τ -echo) with 2-step phase cycling. The T_m values were obtained by using the Hahn-echo sequence with 2-step phase cycling. The Rabi oscillations were obtained by nutation sequence $(t_p - T - \pi/2 - \tau - \pi - \tau - \text{echo})$, where t_p is the duration time of the nutation pulse and T is longer than $5T_{\rm m}$. Two pulse (2p-) and three pulse (3p-) electron spin echo envelope modulation (ESEEM) experiments were carried out with the standard sequences ($\pi/2-\tau-\pi-\tau$ -echo) and ($\pi/2-\tau-\pi/2-\tau-\pi/2-\tau$ -echo). The $\pi/2$ and π pulse lengths in EDFS, T_1 , and T_m measurements were 120 and 240 ns with 18 dB attenuation of the microwave power 450 W, respectively. In nutation experiments, the $\pi/2$ pulse lengths were adjusted to 20, 40, 80, 160, 320 ns by 0, 6, 12, 18, and 24 dB attenuation. In 2p- and 3p-ESEEM experiments, the $\pi/2$ pulse lengths were set to 20 ns by 0 dB attenuation to collect the clear modulation signal of the ¹H nuclear spin.

Reference

- 1 Materials Design and Discovery Group, H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe and O. M. Yaghi, *Nature*, 2004, 427, 523–527.
- 2H. Meng, C. Zhao, Y. Li, M. Nie, C. Wang and T. Wang, *Nanoscale*, 2018, **10**, 3291–3298.