A Novel Extra-Broadband Visible Emitting Garnet Phosphor toward

Efficient Single Component Pc-WLED

Qianyi Chen, ^{a, #} Zhenjie Lun,^{a, #} Dongdan Chen, ^{a, *} Yongsheng Sun, ^a Puxian Xiong, ^{a,c} Siyun Li, ^a Shanhui Xu ^{a, *} and Zhongmin Yang ^{a, b}

^a School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, China.

^b South China Normal University, Guangzhou 510641, China.

E-mail: ddchen@scut.edu.cn; flxshy@scut.edu.cn

Figure S1. B³⁺-concentration dependent luminous properties of YSAG: xB^{3+} (x = 0.10-0.17) samples. a PLE and b PL spectra. c The decay curves at RT of YSAG: xB^{3+} (x=0.10 to 0.17) under 445 nm excitation monitored.

The lifetime was calculated by using Equation (1), as follows¹:

$$I(t) = I_o + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$$
(1)

The average life value can be subsequently found as follows:

$$\tau^* = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \tag{2}$$

where I(t) refer to the time-dependent intensity, τ represents the lifetime values of different decay components and A_1 and A_2 are fitting constants.

Table S1. XRF results of YSAG: 0.15B ³⁺ .

Analyte	Calibration	Compound formula	Concentration	
Al	Calibrated	Al_2O_3	24.280%	
Y	Calibrated	Y_2O_3	52.730%	
Sc	Calibrated	Sc_2O_3	21.984%	
Si	Calibrated	SiO ₂	0.177%	
S	Calibrated	SO_3	0.028%	
Ca	Calibrated	CaO	0.036%	
Fe	Calibrated	Fe ₂ O ₃	0.031%	
Ni	Calibrated	NiO	0.317%	
Ge	Calibrated	GeO ₂	0.372%	
Sm	Calibrated	Sm_2O_3	0.040%	
W	Calibrated	WO ₃	0.125%	

Figure S2. Phase confirmation of YSAG: xB^{3+} (x = 0.00-0.17) samples at room temperature. The X-ray diffraction peaks could be well indexed with the standard card of $Y_3Sc_2Al_3O_{12}$ (PDF No. 79-1846), thereby indicating the formation of a targeted phase.

Figure S3. The Rietveld refinement XRD patterns of YSAG: xB^{3+} (x = 0.00, 0.10, 0.13 and 0.17) samples

Table S2 Crystallographic data of $Y_3Sc_2Al_{3-x}O$: xB^{3+} (x = 0.0, 0.10, 0.13, 0.15 and 0.17) samples based on Rietveld refinements.

Formula	x=0.0	x=0.10	x=0.13	x=0.15	x=0.17
Crystal	Cubic	Cubic	Cubic	Cubic	Cubic
system	Cubic	Cubic	Cubic	Cubic	Cubic
Space	Ia3d	Ia3d	Ia3d	Ia3d	Ia3d
group	10.50	10.50	Idod	Idod	Idod
a=b=c	12.252	12.277	12.280	12.292	12.297
(Å)					
$\alpha = \beta = \gamma$	90	90	90	90	90
(°)					
volume	1830/156	1850 666	1851 013	1857 180	1850 / 35
(Å ³)	1037.430	1850.000	1051.715	1057.107	1057.455
Ζ	16	16	16	16	16
R_{wp} (%)	14.202	11.251	9.196	10.979	11.710
GOF	2.40	1.27	1.34	1.27	1.36
χ^2	5.78	1.60	1.81	1.61	1.85

Figure S4. TEM image of the YSAG: 0.15B³⁺ single particle and its component elemental maps (scale bar: 100 nm).

Figure S5. The XPS survey scan of YSAG and YSAG: 0.15B³⁺. a-b full spectrum scanning. c-d XPS analysis of the Sc 2p orbital.

Figure S6. Band structure of **a** YSAG matrix and **b** YSAG: B³⁺ without oxygen vacancy. **c-e** Band structure of YSAG: B³⁺ with oxygen vacancies.

Figure S7. PDOS of YSAG matrix and YSAG: B³⁺ without and with oxygen vacancies.

Figure S8. The Gaussian fitting peak of the representative YSAG: 0.15B³⁺ sample

Reference

 Q. Chen, M. Wu, P. Xiong, Y. Zhao, S. Tian, Y. Xiao, Y. Sun, D. Chen, S. Xu and Z. Yang, Efficient and Broadband Emission in Dy³⁺-Doped Glass-Ceramic Fibers for Tunable Yellow Fiber Laser, *Nanomaterials*, 2023, 13.